

Efficiency transfer for low-energy (30-100 keV) gamma-ray spectrometry analyses

Reykjavic, Iceland, 25-26 September 2018

Efficiency transfer for low-energy (30-100 keV) gamma-ray spectrometry analyses

Michel Bruggeman, Leen Verheyen, Tim Vidmar

Low Level Radioactivity Measurements

michel.bruggeman@sckcen.be

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Contents

- Efficiency transfer for routine gamma-ray analyses
 - Needs
 - Organization at SCK•CEN (automated efficiency transfer)
 - Problems at low-energy
- Material specific correction for gamma-attenuation
 - Generic material descriptions
 - Transmission experiments element analyses & correction methods
- TEFFTRAN
 - Relative detector response for a transmission experiment
- Efficiency transfer by EFFTRAN with input from TEFFTRAN
 - Proposal procedure

Efficiency transfer for routine gamma-ray analyses

- Efficiency transfer is required for unbiased results
 - Filling height (if no 100% filling is used)
 - Apparent sample density
 - Sample composition (30-100 keV)

Any other sample parameter that is different from the reference

Other corrections that may depend on geometry

- Corrections for ambient background
 - Filling height, density,... may modify background radiation that enters the detector
 - Generally neglected
- True summing corrections
 - unbiased or small bias when the actual sample parameters are used

Organization at SCK-CEN

- Database with sample data
 - Sample container parameters (dimensions, materials)
 - Sample net weight
 - Sample volume (filling height)
 - Sample composition → material list → attenuation data via XCOM¹
 - All sample parameters configured according to EFFTRAN
- Database with detector model data (according to EFFTRAN)
- Reference efficiency calibrations
 - Multi gamma sources + additional nuclides
 - Water matrix (acidified)
 - Fixed volume/filling height (per geometry)
 - Stored as Genie 2000 (cal files)
 - Referenced in database (by geometry ID and detector ID)

Efficiency Transfer and Uncertainty Budget

Efficiency Transfer data model Correction function

Uncertainty Budget (function of gamma-ray energy)

Determination of energy depended uncertainty budget

														_												
	ENERGY(keV)	VULHOOGTE			DIAMETER			BODEM DIKTE			SAMPLE DENSITY			Sample COMPOSITION			POSITIONERING STAAL	CURVE FITTING	REF KALIBRATIEBRON	SYSTEEM DRIFT	GAMMA INTENSITEIT	SUMMING CORRECTION	TELVERLIEZEN	ENERGY (keV)	STANDARD COMBINED UNCERTAINTY	VARIANCE
	EF waar			Ø			0			0			0			0	0	0		0	0	0	0			
	RI		20/		0.00/	0.00/		•••	a a (a		201	2 0/			P					0.01	0	0.00	0.01			
		-3%	3%	MAX	-0.2%	0.2%	MAX	-2%	2% N	мах	-3%	3%	MAX	Α	В	MAX	MAX		0.02	0.01	0	0.02	0.01			X 7 •
1	45	0.0527	0.0490	0.021	0.0016	0.0000	0.0000	0.0019	0.0011	0.001	0.0220	0.0177	0.0120			0.4002	0.0690	0.02	K=1	0.01	DID	0.02	0.01	45	0.410	0 1754
1	45	-0.0537	0.0489	0.031	-0.0016	0.0009	0.0009	-0.0018	0.0011	0.001	-0.0239	0.0177	0.0138			0.4092	0.0650	0.02	0.02	0.01	0	0.02	0.01	45 60	0.419	0.1/54
2	80	-0.0534	0.0461		-0.0008	0.0010	0.0009	-0.0010	0.0010	0.001	-0.0213	0.0102	0.0125			0.2355	0.0050	0.02	0.02	0.01	0	0.02	0.01	80	0.249	0.0019
4	100	-0.0520	0.0474	0.030	-0.0010	0.0013	0.0007	-0.0017	0.0015	0.001	-0.0201	0.0133	0.0110			0.1201	0.0590	0.02	0.02	0.01	0	0.02	0.01	100	0.131	0.0228
5	150	-0.0510	0.0467	0.029	-0.0012	0.0013	0.0007	-0.0020	0.0012	0.001	-0.0170	0.0139	0.0099			0.0419	0.0540	0.02	0.02	0.01	0	0.02	0.01	150	0.087	0.0221
6	200	-0.0501	0.0458	0.029	-0.0008	0.0012	0.0007	-0.0016	0.0012	0.001	-0.0164	0.0133	0.0095			0.0307	0.0500	0.02	0.02	0.01	0	0.02	0.01	200	0.080	0.0063
5	150	-0.0510	0.0467	0.029	-0.0012	0.0012	0.0007	-0.0020	0.0012	0.001	-0.0170	0.0139	0.0099			0.0419	0.0540	0.02	0.02	0.01	Õ	0.02	0.01	150	0.080	0.0063
6	200	-0.0501	0.0458	0.029	-0.0008	0.0012	0.0007	-0.0016	0.0016	0.001	-0.0164	0.0133	0.0095			0.0307	0.0500	0.02	0.02	0.01	0	0.02	0.01	200	0.080	0.0063
7	250	-0.0492	0.0448	0.028	-0.0008	0.0012	0.0007	-0.0016	0.0016	0.001	-0.0159	0.0122	0.0092			0.0294	0.0480	0.03	0.01	0.01	0	0.02	0.01	250	0.084	0.0070
8	300	-0.0484	0.0443	0.028	-0.0004	0.0012	0.0007	-0.0017	0.0012	0.001	-0.0154	0.0117	0.0089			0.0286	0.0460	0.02	0.01	0.01	0	0.02	0.01	300	0.076	0.0057
9	400	-0.0474	0.0430	0.027	-0.0004	0.0013	0.0007	-0.0017	0.0013	0.001	-0.0138	0.0117	0.0080			0.0266	0.0420	0.02	0.02	0.01	0	0.02	0.01	400	0.072	0.0052
10	500	-0.0463	0.0424	0.027	-0.0009	0.0009	0.0005	-0.0017	0.0009	0.001	-0.0133	0.0106	0.0077			0.0261	0.0390	0.02	0.02	0.01	0	0.02	0.01	500	0.070	0.0049
11	600	-0.0452	0.0416	6 0.026	-0.0004	0.0013	0.0008	-0.0013	0.0013	0.001	-0.0122	0.0101	0.0071			0.0247	0.0370	0.01	0.01	0.01	0	0.02	0.01	600	0.063	0.0040
12	700	-0.0447	0.0411	0.026	-0.0004	0.0013	0.0008	-0.0013	0.0013	0.001	-0.0117	0.0096	0.0068			0.0232	0.0350	0.01	0.01	0.01	0	0.02	0.01	700	0.062	0.0038
13	800	-0.0443	0.0403	0.026	-0.0004	0.0013	0.0008	-0.0013	0.0013	0.001	-0.0112	0.0096	0.0065			0.0226	0.0340	0.01	0.01	0.01	0	0.02	0.01	800	0.061	0.0037
14	900	-0.0435	0.0401	0.025	-0.0009	0.0009	0.0005	-0.0018	0.0009	0.001	-0.0107	0.0091	0.0062			0.0216	0.0320	0.01	0.01	0.01	0	0.02	0.01	900	0.059	0.0035
15	1100	-0.0426	0.0394	0.025	-0.0005	0.0009	0.0005	-0.0014	0.0009	0.001	-0.0103	0.0082	0.0060			0.0199	0.0300	0.01	0.01	0.01	0	0.02	0.01	1100	0.057	0.0033
16	1400	-0.0418	0.0382	0.024	-0.0005	0.0010	0.0006	-0.0014	0.0010	0.001	-0.0089	0.0078	0.0051			0.0173	0.0270	0.01	0.01	0.01	0	0.02	0.01	1400	0.054	0.0030
17	1700	-0.0409	0.0375	0.024	-0.0005	0.0010	0.0006	-0.0010	0.0010	0.001	-0.0079	0.0074	0.0046			0.0153	0.0250	0.01	0.01	0.01	0	0.02	0.01	1700	0.053	0.0028
18	2000	-0.0399	0.0371	0.023	-0.0005	0.0010	0.0006	-0.0010	0.0010	0.001	-0.0081	0.0063	0.0047			0.0137	0.0230	0.01	0.01	0.01	0	0.02	0.01	2000	0.051	0.0026

Uncertainty function and corresponding polynomial

An uncertainty budget function is defined for each counting geometry

Generic sample compositions for sample matrices

 well defined materials (water, PE, metals...)

- material class
 - Organic matter

Soil/dirt

Uncertainty budget does not assume variability of the sample composition

Uncertainty budget **accounts for variability of the sample composition** and its impact on detection efficiency

Uncertainty gets unrealistically large at low energy !

Means to determine sample attenuation

- Generic compositions
- By comparison with representative standards
 - (not very practical for general use)
- XRF-handheld monitor, AOS-MS,...
 - Specify the sample material for the EFFTRAN sample model
 - Elements from Mg \rightarrow U, other elements O and H ?
 - Apply a standard efficiency transfer with EFFTRAN
 - Attenuation data from XCOM
- Multi Energy gamma-ray transmission measurement through sample material

$$T(E) = \exp(-\mu_l(E) x)$$

Only valid for parallel beams and well defined geometry ?

Transmission setup at SCK-CEN

Experimental determination of linear attenuation coefficient

• Well collimated beam is required

$$R(x) = R_0 \exp(-\mu_l x)$$

$$\mu_l = -\frac{\ln\left(\frac{R_0}{R}\right)}{x}$$

- High intensity sources required
- At low energy small angle Compton scattering contributions may bias the results
- Time consuming

Effects of low-angle scattering may complicate multi energy transmission

Spectrum obtained by using a single collimator

Attenuation Correction Procedures based on Transmission

- NUREG/CR-5550 (LA-UR-90-732) "Passive Nondestructive Assay of Nuclear Materials", 1991
 - Chapter 6: "Attenuation Correction Procedures" by J.L. Parker and references therein
 - Far-field form for self-attenuation correction factor for a boxshaped sample

$$CF(AT) = \frac{\mu_l x}{1 - \exp(-\mu_l x)}$$
$$CF(AT) = \frac{-\ln(T)}{1 - T}$$

- These equations are only valid if the gamma-rays travel in a perpendicular direction from the sample towards the detector
- This is generally not the case, especially not when the sample is measured close to the detector

Attenuation Correction Procedures

- N.H. Cutshall, correction for Pb²¹⁰ in sediments (1981)
- Near field (wide angle) $CF(AT) = \frac{-\ln(T)}{1 - T}$ 60 mm 35 mm

Cutshall correction (relative to air) compared to EFFTRAN

8 **−2(60)** 6 4 2 Bias (%) 0 -2 -4 -6 -8 0.5 1.5 0 1 2 2.5 μ (1/cm)

Bias cutshall vs. EFFTRAN (%) for different geometries

Sediment sample in pillbox (20mm heigh at different diameters, 50mm, 60mm and 90mm) Cutshall relative to air On a 60mm x 60mm detector

Cutshall relative to another reference sample material

Transmission relative to reference closer to the sample improves accuracy

bias (%) as a function of μ and choice of reference

What to do to get unbiased results ?

- Cutshall method may give acceptable results (few % bias)
 - Specially for not too high attenuation
 - Well selected geometry
 - Live with the bias and include it in the standard uncertainty
- Generally Cutshall is biased
 - Requires additional corrections
- Better to use full simulation to fix the relation between transmission data and sample material (µ-values) for a specified geometry
 - General purpose Monte Carlo codes like MCNP,...
 - Gespecor
 - TEFFTRAN (by Tim Vidmar)

Not easy to include in automation or simple working procedure

Single energy versus energy range corrections

Single Energy Correction

- Correct the required energy e.g. 46.54 keV for Pb-210
- Use a transmission source that exactly emits this energy

Corrections in an Energy Range

- Multi energy gamma-ray source
- Low energy peaks suffer bad counting statistics when measured with a multi-energy gamma-ray source
- Only the low energy window 30 keV 120 keV requires element specific corrections, for the higher energy a correction based on density only is appropriate
- What is an appropriate multi energy source ?

I-129 – Am-241

- Interpolation between transmission/attenuation data
- How to deal with K,L...-edges

Inter/extra-polation of attenuation data

- 1) Via polynomial fitting of the attenuation data as a function of energy (= a strongly varying function of energy at low energy)
- 2) Via fitting with an appropriate material composition

$$\mu(E) \approx \sum_{i=1}^{N} w_i \, \mu_i(E)$$

With $\mu_i(E)$ the mass attenuation coefficient for element *i* from XCOM

- With w_i the relative contribution of element *i* and $\sum w_i = 1$
- With *N* the number of elements in a well defined set of elements

Inter/extra-polation of attenuation data

• General least squares fitting minimizing F by changing w_i

$$F(E_j, w_i) = \left(\mu_{exp}(E_j) - \sum_{i=1}^{N} \frac{w_i \mu_i(E_j)}{1}\right)^2 = 0$$

- The set of elements should be well selected
 - Not complete periodic table
 - Element sets can be defined for specific materials (weak point)
- Least squares problem can be solved in e.g. Excel (Solver add-in)
- Outcome is not a polynomial but a sample composition
 - Inter & extrapolation (by XCOM)
 - K-edges are included (if elements data set is correct)
- The computed sample composition is not necessary the correct composition but yields an equivalent composition

TEFFTRAN: the way to µ-values from uncollimated experiments

- Uses computational procedures like in EFFTRAN
- Considers a cylindrical source (dimensions)
- Source is on top of sample (cutshall geometry)
- Sample is a cylinder (all walls same thickness, composition and density are to specify
- Detectormodel as in EFFTRAN
- No absolute response but a ratio of two computations at different density and composition is to be compared with the experimental ratio
- TEFFTRAN can be run from a batch command once the input files are defined
 - In an iteration process the μ-value can be obtained from the simple transmission measurement

Procedure for low-energy attenuation correction based on TEFFTRAN and EFFTRAN

Combining transmission data and element composition

- To fill the gap of missing elements in the element composition (H-Na, Mg-S)
- Use the measured heavy elements to compose a basic composition
 - Refine the composition with missing elements, H, O, C,...
 - Compare the measured μ -data with the computed μ -data
- Make efficiency transfer with the optimized composition
- Uncertainty component $\Delta \mu \rightarrow \Delta CF$

Conclusion

- Gamma-ray attenuation data can be obtained from a transmission experiment without collimator using an appropriate modeling software of TEFFTRAN
- Multi Energy Transmission data only do not give full details on actual gamma-attenuation
 - No means to account for K-edges
 - Determination of an equivalent composition with an appropriate set of elements may (partially) cope with K-edges
 - A combination of transmission + the measurement of the element composition of the sample material (X-ray,...) may result in the most complete information
- A procedure for efficiency transfer relaying on EFFTRAN and TEFFTRAN was proposed

Thank you for your attention