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Objectives

• Gamma Ray Radionculdes Identification in Spectra
• Activity prediction
• Nuclides identitfication

• Develop a global model with less constraints in terms of number of 
nuclides identified and method of inputting the spectrum.

• Create a large-scale dataset of spectra



Results

Testing evaluation metrics Values

(%)

Accuracy 0.94

Hamming loss 0.011

F1-score 0.966

Precision 0.965

Accuracy Hamming loss

ANN [8] 76.61% 0.239

CNN [27] 93.2% 0.029

Ours (ResNet) 94% 0.011



Limitations
• Same combinations
• Large number of nuclides
• Overfitting



Proposed Method

• The MoE model is a type of ensemble learning 
method that combines the predictions of 
multiple “expert” models, each of which 
specializes in a specific portion of the data. 

• A gating function, or router, decides which 
expert(s) should handle each input data point. 

• Both the experts and the router are trained 
simultaneously using gradient descent, a 
common optimization algorithm in machine 
learning.

https://arxiv.org/abs/2208.02813



Mixture of Experts

In the MoE model, we have 33 experts, each specializing in 
recognizing a specific one nuclide from 1 to 33. 
• Each expert is Random Forest that has been trained to 

recognize its specific nuclide. 
• Alongside the experts, there’s a router, another neural 

network that takes a spectrum as input and decides which 
expert should handle it. 

• For example, if the router receives a spectrum of nuclide ‘3’, 
it should route this spectrum to the expert that specializes 
in recognizing nuclide ‘3’s.

• During training, both the experts and the router are trained 
using gradient descent. The experts are trained to become 
better at recognizing their specific nuclides, and the router 
is trained to become better at dispatching spectra to the 
right expert. 

• The output of the MoE layer is a combination of the outputs 
of the selected experts, weighted by the router’s gating 
values. 



Dataset
• The gamma-ray spectrum 𝑆𝑆𝑙𝑙 of 𝑙𝑙th radionuclide (1 ≤ 𝑙𝑙 ≤ 33) was

calculated using the Nucleonica Gamma Spectrum Generator Pro

application.

• The setup was: a high-purity germanium detector (HPGe) with an

input window of Beryllium, a crystal packing with a crystal diameter

of 80 mm and height of 30 mm, and a reflector of germanium.

• The source was placed at the detector axis 5 mm from the entrance

window. The number of spectrum channels was 2048. The channel-

to-energy conversion factor was set to 0.9 keV/channel, and the full

width at half maximum (FWHM) was 0.75 keV at 122 keV. The

nuclide activity was set to 1 Bq, and the acquisition time was set to

1000 s.

An example spectrum of 40K. (Blue) shows the original spectrum, 

(b) and (c) show the same spectrum with different random activity 

coefficients.



Results
Nuclides Root Mean Squared Error (RMSE) Correlation Coefficient

1 0.023703013623059353 0.9967496885208839
2 0.025121475463594677 0.9963192561813509
3 0.024476372428756468 0.9964944641969723
4 0.023702739855678043 0.9966920050692459
5 0.02659358946776954 0.9958850399225772
6 0.024780980561838407 0.9964158170540809
7 0.024134627599482036 0.9965832269255369
8 0.03088518930724672 0.9943166795114441
9 0.026278036629398992 0.9959401506855421

10 0.02415947683798635 0.9965852143067994
11 0.03118459850214415 0.9942510391835282
12 0.0291896508609519 0.9949522171829567
13 0.23335315644982754 0.8268628819317632
14 0.2179365736822283 0.9016923034249824
15 0.2141924010002705 0.8962067227615111
16 0.23207277845387986 0.8308446717258501
17 0.2089857451160745 0.9284366694862533
18 0.218503800059807 0.8937213884201568
19 0.21385891619668396 0.9135922768156411
20 0.2240794627866336 0.8686029093256844
21 0.21840890955649808 0.8915431135062085
22 0.22512363128803964 0.8348881403122959
23 0.2241679888290192 0.8799150174994943
24 0.22192440172407 0.8984664513684325
25 0.21332151853666442 0.9192021956105032
26 0.22676775971211405 0.8636938228600154
27 0.21592741167770205 0.9004007269387128
28 0.2266491084196206 0.8422502437599863
29 0.2246842226808011 0.8715486299479897
30 0.23288800132255452 0.8432124303767998
31 0.2143519277411918 0.9183255316604655
32 0.22481984259297416 0.8841746143105487
33 0.20856686697244903 0.9237930858598694



Dataset 2: Fine-tuning or Retraining the MoE

Combined Model Mean 
Squared Error: 0.0537

Nuclides

1 Y-93 - Yttrium (Y)

2 I-135 - Iodine (I)

3 Sr-91 - Strontium (Sr)

4 Mo-99 - Molybdenum (Mo)

5 La-141 - Lanthanum (La)

6 Ce-143 - Cerium (Ce)

7 Sb-129 - Antimony (Sb)

8 Te-129 - Tellurium (Te)

9 Ba-140 - Barium (Ba)

10 Zr-95 - Zirconium (Zr)

11 Ru-103 - Ruthenium (Ru)

12 Ce-141 - Cerium (Ce)

13 Sr-89 - Strontium (Sr)

14 Y-91 - Yttrium (Y)

15 Ce-144 - Cerium (Ce)

16 Pr-143 - Praseodymium (Pr)

17 I-131 - Iodine (I)

18 Sb-128 - Antimony (Sb)

19 Te-131 - Tellurium (Te)

20 Te-132 - Tellurium (Te)



Training on 11 Nuclides
Nuclides

1 Y-93 - Yttrium (Y)
2 I-135 - Iodine (I)
3 Sr-91 - Strontium (Sr)
4 Mo-99 - Molybdenum (Mo)
5 La-141 - Lanthanum (La)
6 Ce-141 - Cerium (Ce)
7 Sb-129 - Antimony (Sb)
8 Te-129 - Tellurium (Te)
9 Ba-140 - Barium (Ba)

10 Zr-95 - Zirconium (Zr)
11 Sr-89

5000 examples
(Random activities
generation (0 to 1)

Activities predicition

Nuclides RMSE R_2 
1 0.07 0.92
2 0.07 0.93
3 0.07 0.92
4 0.07 0.92
5 0.07 0.92
6 0.06 0.94
7 0.07 0.95
8 0.07 0.92
9 0.07 0.92

10 0.07 0.92
11 0.07 0.92

Average 0.058 0.9287



Testing Results



Inference

Nuclides: Y-93, I-135, Sr-91
Activities: 0.46, 0.87, 0.83

Model



Gain Shift

Model

Nuclides: Y-93, I-135, Sr-91
Activities: Activities: 0.46, 0.87, 0.83
Gain Factor=20 channels



Contributions and Future Works
• Mixture of Experts Approach: To address limitations and challenges of CNN-based models, we proposed a 

new approach called "Mixture of Experts." 
• This approach allowed the model to be tested on spectra with different numbers of nuclides and activities, 

enhancing its capabilities in both nuclide identification and activity prediction.

• We are currently testing our second approach that overcomes the limitations and challenges faced in the 
previous one (deep CNN) on a new set of more complex nuclides with shorter half-life. 

• This new method is meant to be a foundation model that can be fine-tuned to any set of nuclides in a short 
time, which makes it practical and globally used in several situations such as Nuclear Medicine, Radiation 
Therapy, Emergency Preparedness, Nuclear Power etc…

• More testing is needed

• More data is needed to increase the performance of the models
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