Nuclide Identification in Gamma-ray Spectroscopy Using Mixture of Experts Approach

Abdulkader Helwan, Mats Eriksson, Alexandr Malusek

Objectives

- Gamma Ray Radionculdes Identification in Spectra
 - Activity prediction
 - Nuclides identitification
- Develop a global model with less constraints in terms of number of nuclides identified and method of inputting the spectrum.
- Create a large-scale dataset of spectra

Results

Limitations

- Same combinations
- Large number of nuclides
- Overfitting

Proposed Method

- The MoE model is a type of ensemble learning method that combines the predictions of multiple "expert" models, each of which specializes in a specific portion of the data.
- A gating function, or router, decides which expert(s) should handle each input data point.
- Both the experts and the router are trained simultaneously using gradient descent, a common optimization algorithm in machine learning.

https://arxiv.org/abs/2208.02813

Mixture of Experts

In the MoE model, we have 33 experts, each specializing in recognizing a specific one nuclide from 1 to 33.

- Each expert is Random Forest that has been trained to recognize its specific nuclide.
- Alongside the experts, there's a router, another neural network that takes a spectrum as input and decides which expert should handle it.
- For example, if the router receives a spectrum of nuclide '3', it should route this spectrum to the expert that specializes in recognizing nuclide '3's.
- During training, both the experts and the router are trained using gradient descent. The experts are trained to become better at recognizing their specific nuclides, and the router is trained to become better at dispatching spectra to the right expert.
- The output of the MoE layer is a combination of the outputs of the selected experts, weighted by the router's gating values.

Dataset

Isotope	Half life
Xe-137	3.818 m
Y-95	10.3 m
Ba-142	10.6 m
XE-138	14.08 m
LA-143	14.2 m
MO-101	14.61 m
Y-94	18.7 m
BA-141	18.27 m
TE-133	12.5 m
TE-134	41.8 m
SB-131	23.03 m
TC-104	18.3 m
TE-133M	55.4 m
MN-56	2.57 h
SR-92	2.71 h
KR-87	76.3 m
KR-88	2.84 h
I-135	6.57 h
CS-138	33.41 m
I-134	52.5 m
XE-135M	15.29 m
Y-93	10.18 h
SR-91	9.63 h
SN-128	59.07 m
SB-130	39.5 m
ZR-97	16.91 h
KR-85M	4.48 h
SB-129	4.40 h
TE-131	25 m
MO-99	65.9 h
TE-132	3.2 d
CO-58M	9.04 h
BA-140	12.75 d
I-133	20.8 h
LA-142	91.1 m

- The gamma-ray spectrum S_l of lth radionuclide (1 ≤ l ≤ 33) was calculated using the Nucleonica Gamma Spectrum Generator Pro application.
- The setup was: a high-purity germanium detector (HPGe) with an $_{10^5}$ input window of Beryllium, a crystal packing with a crystal diameter $_{10^4}$ of 80 mm and height of 30 mm, and a reflector of germanium.
- The source was placed at the detector axis 5 mm from the entrance 10² window. The number of spectrum channels was 2048. The channel- 10¹ to-energy conversion factor was set to 0.9 keV/channel, and the full width at half maximum (FWHM) was 0.75 keV at 122 keV. The nuclide activity was set to 1 Bq, and the acquisition time was set to 1000 s.

Results

Nuclides	Root Mean Squared Error (RMSE)	Correlation Coefficient
1	0.023703013623059353	0.9967496885208839
2	0.025121475463594677	0.9963192561813509
3	0.024476372428756468	0.9964944641969723
4	0.023702739855678043	0.9966920050692459
5	0.02659358946776954	0.9958850399225772
6	0.024780980561838407	0.9964158170540809
7	0.024134627599482036	0.9965832269255369
8	0.03088518930724672	0.9943166795114441
9	0.026278036629398992	0.9959401506855421
10	0.02415947683798635	0.9965852143067994
11	0.03118459850214415	0.9942510391835282
12	0.0291896508609519	0.9949522171829567
13	0.23335315644982754	0.8268628819317632
14	0.2179365736822283	0.9016923034249824
15	0.2141924010002705	0.8962067227615111
16	0.23207277845387986	0.8308446717258501
17	0.2089857451160745	0.9284366694862533
18	0.218503800059807	0.8937213884201568
19	0.21385891619668396	0.9135922768156411
20	0.2240794627866336	0.8686029093256844
21	0.21840890955649808	0.8915431135062085
22	0.22512363128803964	0.8348881403122959
23	0.2241679888290192	0.8799150174994943
24	0.22192440172407	0.8984664513684325
25	0.21332151853666442	0.9192021956105032
26	0.22676775971211405	0.8636938228600154
27	0.21592741167770205	0.9004007269387128
28	0.2266491084196206	0.8422502437599863
29	0.2246842226808011	0.8715486299479897
30	0.23288800132255452	0.8432124303767998
31	0.2143519277411918	0.9183255316604655
32	0.22481984259297416	0.8841746143105487
33	0.20856686697244903	0.9237930858598694

Dataset 2: Fine-tuning or Retraining the MoE

Combined Model Mean Squared Error: 0.0537

Training on 11 Nuclides

	Nuclides	
1	Y-93 - Yttrium (Y)	
2	I-135 - Iodine (I)	
3	Sr-91 - Strontium (Sr)	
4	Mo-99 - Molybdenum (Mo)	
5	La-141 - Lanthanum (La)	
6	Ce-141 - Cerium (Ce)	
7	Sb-129 - Antimony (Sb)	
8	Te-129 - Tellurium (Te)	
9	Ba-140 - Barium (Ba)	
10	Zr-95 - Zirconium (Zr)	
11	Sr-89	

Nuclides	RMSE	R_2
1	0.07	0.92
2	0.07	0.93
3	0.07	0.92
4	0.07	0.92
5	0.07	0.92
6	0.06	0.94
7	0.07	0.95
8	0.07	0.92
9	0.07	0.92
10	0.07	0.92
11	0.07	0.92
Average	0.058	0.9287

Testing Results

Inference

Nuclides: Y-93, I-135, Sr-91 Activities: 0.46, 0.87, 0.83

Gain Shift

Contributions and Future Works

- **Mixture of Experts Approach:** To address limitations and challenges of CNN-based models, we proposed a new approach called "Mixture of Experts."
- This approach allowed the model to be tested on spectra with different numbers of nuclides and activities, enhancing its capabilities in both nuclide identification and activity prediction.
- We are currently testing our second approach that overcomes the limitations and challenges faced in the previous one (deep CNN) on a new set of more complex nuclides with shorter half-life.
- This new method is meant to be a foundation model that can be fine-tuned to any set of nuclides in a short time, which makes it practical and globally used in several situations such as Nuclear Medicine, Radiation Therapy, Emergency Preparedness, Nuclear Power etc...
- More testing is needed
- More data is needed to increase the performance of the models