GAMMA-RAY SIGNALS IN NEUTRON ACTIVATION ANALYSIS

neutrongate ANALYZE - OPTIMIZE - IMPROVE

Sakari Ihantola, CTO sakari@neutrongate.com +348 405710099

ABOUT NEUTRONGATE

- Located in Riihimäki, 70 km North from Helsinki
- Neutron activation based elemental analysis
 - Instruments
 - Laboratory service
- Inhouse development of neutron generators

NEUTRON ACTIVATION GAMMA RAYS

NEUTRON ACTIVATION ANALYSIS

ELEMENTAL ANALYSIS

_ _ _ _ -(4)

PROCESS NEUTRON PRODUCTION

Neutron beam is produced by innovative new accelerator produced by NeutronGate

NEUTRON ACTIVATION

Neutrons interact with nuclei in the material flow exiting them and inducing gamma emission that is element specific.

DATA ACCUISITION

Gamma signals from detector array are filtered and analysed in order to provide raw data and spectrums.

ELEMENTAL DATA

Raw data from detectors is filtered, calibrated and analysed providing elemental identification, elemental ratios and concentrations to the client.

PARTS PLASMA^①

Energy is fed in to low density gas that ionizes via electron collisions forms plasma

ACCELERATOR 2

Beam is extracted from plasma focused and accelerated to beam target.

BEAM TARGET ³

nuclei collide at the beam target forming neutrons via nuclear fusion

SAMPLE 4

mass on the conveyor is irradiated with neutrons.

DETECTION ARRAY 5

Detector array detects the gammas comming from irradiated material.

SHIELDING 6

Remainig neutrons are shielded from the environment by radiation shielding

GAMMA RAY DETECTORS

Detectors used must tolerate high neutron flux

• BGO

- Elements with low neutron capture cross-section
- Great efficiency for high-energy gamma rays
- N-Type HPGe with TRP-preamp
 - N-type: Better resistance to neutron damage, can be annealed
 - TRP-pream for fast counting

PULSED FAST THERMAL NEUTRON ANALYSIS

EXAMPLE: FAST NAA SPECTRUM

- Spectrum recorded during the neutron pulses
- Identified gamma lines induced by fast neutron recoil

EXAMPLE: FAST NAA SPECTRUM

Energy (keV)

EXAMPLE: THERMAL NAA SPECTRUM

EXAMPLE: DELAYED NAA SPECTRUM

- Spectrum recorded after the neutron exposure
- Neutron activation products with long enough half-life
- Detector may not be exposed to neutrons

NEUTRON ACTIVATION GAMMA IMAGING

GeGi HPGe compton camera Mustard gas surrogate munition

TNT surrogate munition

Netron generator

HPGE REPAIR SERVICE

- Repair for HPGe detectors that are not under Manufacturer's Warranty
- Vacuum pump & bake
- Replacement of vacuum O-rings

Thank You

Sakari Ihantola sakari@neutrongate.com +348 405710099

Detection thresholds for thermal PGNAA, DGNAA rough estimate

Detection threshold	
%-w	Element
<0.01	H,In,Au,Hg,Hf,Er,B,Cd,Nd,Sm,Eu,Gd,Dy
	Li,Na,Mg,Al,Si,S,K,Ca,Cr,Fe,Ni,Cu,Se,Br,Kr,Sr,Ru,Pd,Te,Xe,Cs,W,La,Tb,U,
<0.1	CI,Sc,Ti,V,Mn,Co,Rh,Ag,Ta,Re,Pt,Ho,Yb,Lu
<1	Be,N,F,P,Ar,Zn,Ga,Ge,As,Rb,Y,Zr,Nb,Mo,Tc,Sn,Sb,I,Ba,TI,Ce,Pr,Tm,Th,Np,Pu,Am
>1	C,O,Ne,Pb,Bi

PGNAA detection thresholds.

Detection threshold	Floment
70-W	Element
<1ppm	Mn,Rh,Ag,Hf,Sc,V,Kr,In,Eu,Dy
<10ppm	Na,Cu,Ga,As,Br,Sr,Y,Nb,La,W,Os,U,Sc,Sm,Ho,Lu,Re,Ir,Au,Al,I,Ba
<100ppm	Co,Ge,Ru,Pd,Sb,Te,Xe,Nd,Er,Yb,Pt,Hg,Ar,Mg,Mo,Cd,Pr,Gd,Ta
<0.1%	Ne,K,Ca,Ni,Rb,Tm,F,Cl,Ti,Zn,Se,Sn,Ce,Th

DGNAA detection thresholds, measurement time usually at least 10% of element half life.

When NAA is competitive

- 1. Large liquid and solid sample volumes.
- 2. In-line and real-time analysis is needed.
- 3. Surface- or sample analysis is not enough.
- 4. Representative analysis/sampling is needed.
- 5. Nondestructive or non-contact measurement is needed.
- 6. Element mass is important, regardless of material phase or chemical bonds.

AUXILIARY SYSTEMS:

Contain all the electronics and coolers in order to control and power the OreGate system. (Separate unit.)

NEUTRON SOURCE:

Electrical neutron source based on low energy particle accelerator producing neutrons via nuclear fusion reaction. Mainly via d(d,n)He, d(Li,n)Be fusion reactions. Advantages are safety, pulsed operation and high neutron yield.

RADIATION SHIELDING:

In OreGate configuration Radiation shielding surrounds the conveyor belt and patch is irradiated from top and gamma signal is detected from below or on top of the belt.

DETECTOR ARRAY:

Detector measuring the gamma radiation resulting from neutron irradiation. Detectors measure the energy spectrum which is characteristic to the elemental composition of material flow. Neutron detectors stabilize the neutron production.

OreGate