Activity standardization by photon-photon coincidence methods

Nikola Marković

Per Roos

Sven Poul Nielsen

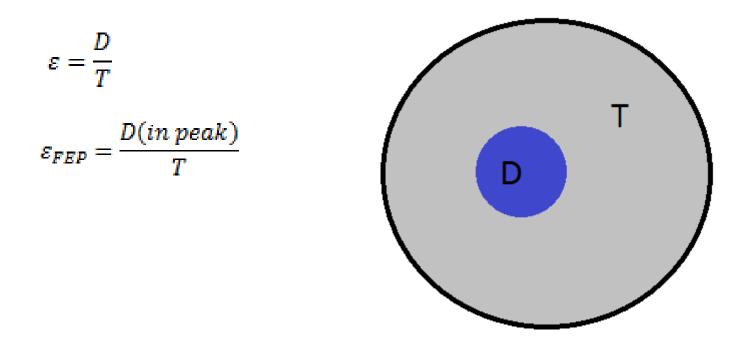
SAHLGRENSKA ACADEMY

Outline

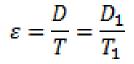
- Introduction
 - Becquerel
 - Activity standardization
- Coincidence methods
 - Gamma-gamma coincidence
 - ⁶⁰Co example
 - ¹²⁵I example
- Conclusion

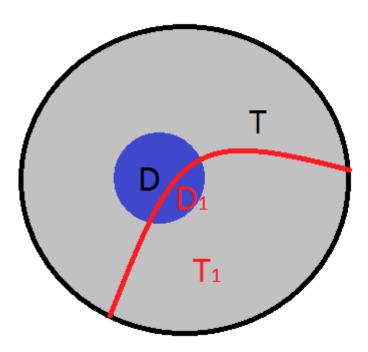
Activity standardization

"The activity, A, of an amount of a radionuclide in a particular energy state at a given time is the quotient of -dN by dt, where dN is the mean change in the number of nuclei in that energy state due to spontaneous nuclear transformations in the time interval dt, thus A = -dN/dt.

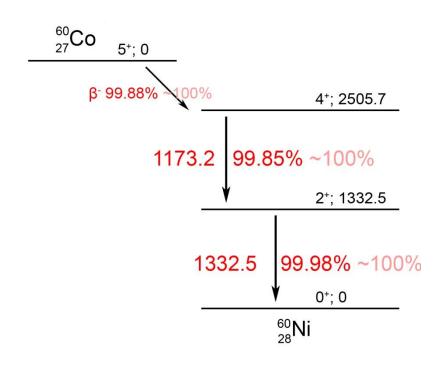

Unit: s⁻¹. The special name for the unit of activity is becquerel (Bq)."

(ICRU, 2011)

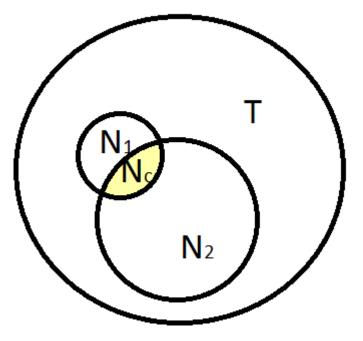

Standardization methods:


- The high-geometry (4n) systems
- Defined solid angle counting
- Coincidence counting methods

What is efficiency?



What is efficiency?



Coincidence method: Co-60

$$\varepsilon_1 = \frac{N_1}{T} = \frac{N_c}{N_2}$$

- N1 -detected by detector 1
- N2 detected by detector 2

Nc – coincident detection by both detectors

Absolute activity determination: Co-60

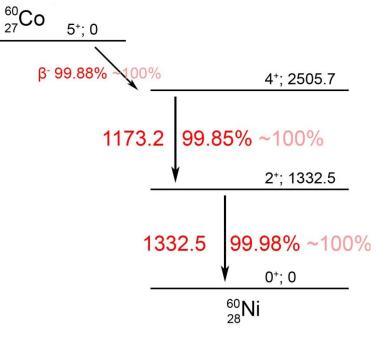
 γ - γ coincidence simplified version:

 $N_{\rm 1}$ – number of counts in 1173 keV peak on detector 1:

$$N_1 = N_0 * \varepsilon_1$$

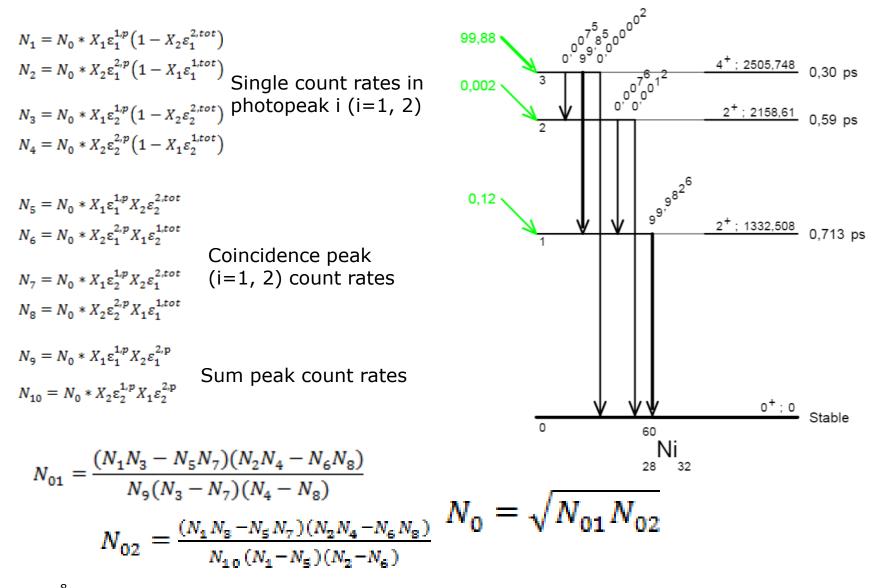
 N_2 - number of counts in 1332 keV peak on detector2:

$$N_2 = N_0 * \varepsilon_2$$


Coincidence peak count rates:

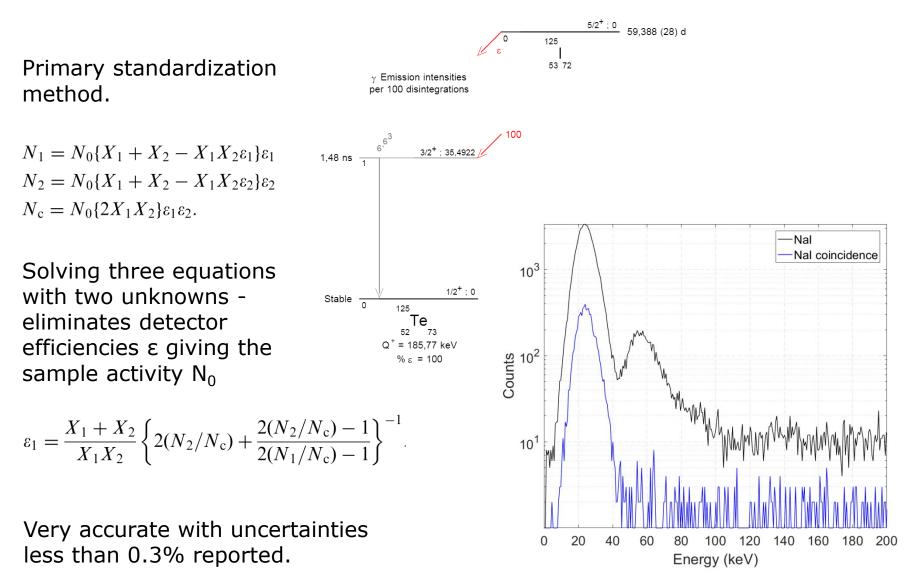
$$N_c = N_0 * \varepsilon_1 * \varepsilon_2 * W(\theta)$$

$$\begin{bmatrix} \varepsilon_1 \\ = N_1/N_0 \end{bmatrix} N_0 = \frac{N_1N_2}{N_c} * W(\theta)$$


$$\begin{bmatrix} \varepsilon_2 \\ = N_2/N_0 \end{bmatrix}$$

$$\begin{bmatrix} \varepsilon_2 \\ \varepsilon_2 \end{bmatrix} = \frac{N_c}{N_1 * W(\theta)}$$

= N(photons detected in the peak) N(photons emitted from the source)


Absolute activity determination: Co-60

 $^{\circ}$ Volkovitsky, P., Naudus, P., 2009. Nucl. Inst. Methods Phys. Res. A 607, 568–572.

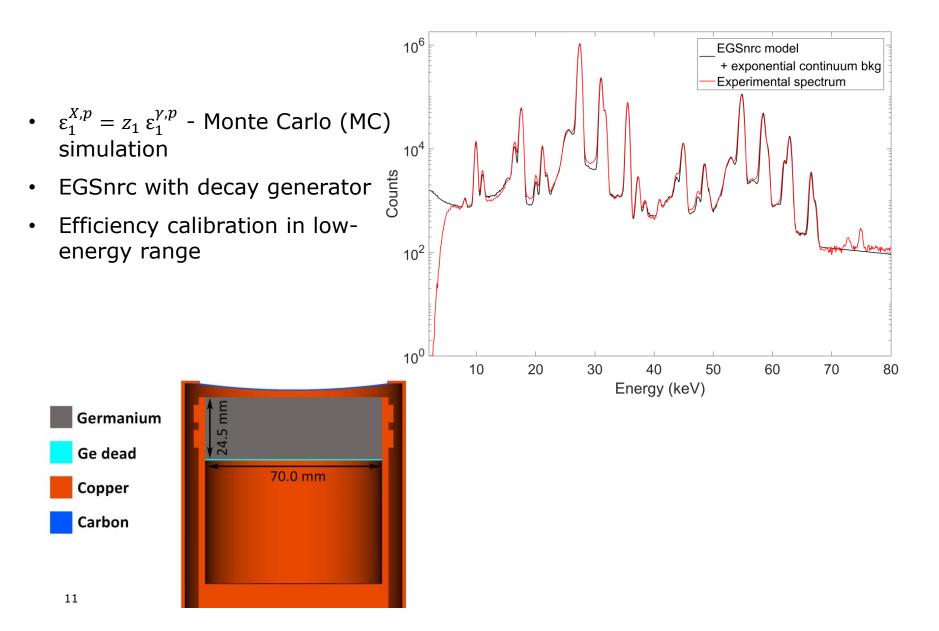
Activity standardization

¹²⁵I NaI(TI)-NaI(TI)

¹²⁵I HPGe-HPGe

Ge X-ray escape makes problems: $N_1 = N_0(X_\gamma \varepsilon_1^{\gamma,p} - X_\gamma \varepsilon_1^{\gamma,p} \times X_1 \varepsilon_1^{X,tot})$ $N_2 = N_0(X_\gamma \varepsilon_2^{\gamma,p} - X_\gamma \varepsilon_2^{\gamma,p} \times X_1 \varepsilon_2^{X,tot})$ $N_3 = N_0 X_\gamma \varepsilon_2^{\gamma,p} \times X_2 \varepsilon_1^{X,p}$ $N_4 = N_0 X_\gamma \varepsilon_1^{\gamma,p} \times X_2 \varepsilon_2^{X,p}$ $N_5 = N_0 X_\gamma \varepsilon_1^{\gamma,p} \times X_1 \varepsilon_2^{X,tot}$ $N_6 = N_0 X_\gamma \varepsilon_2^{\gamma,p} \times X_1 \varepsilon_1^{X,tot}$

 10^{5}


Additional assumption for analytical solution:

$$\varepsilon_1^{X,p} = z_1 \, \varepsilon_1^{\gamma,p}$$
$$N_{01} = \frac{z_1 (N_1 N_2 - N_5 N_6)^2 X_2}{N_3 (N_1 - N_5) (N_2 - N_6) X_{\gamma}}$$

Method	Activity (Bq)
Coincidence with HPGe detectors	298.4±6.5
Coincidence with NaI detectors	300.0 ± 1.3

Activity standardization

¹²⁵I HPGe-HPGe

Conclusions and perspectives

- Simple and interesting education tool
- Easy to reach <5% deviation
- Corrections needed to achieve good accuracy (deadtime, angular correlation ...)
- Works only for point sources (sometimes complicated point source production)

Extension to volume sources possible (Vidmar, T et al. Appl. Radiat. Isot. 67, 160–163)

Try it!

Experimental facilities

Nutech Coincidence Low Energy Germanium Sandwich Spectrometer (NUCLeGeS) - two HPGe detectors

Dual NaI(TI) system

Digital acquisition systems

•CAEN MCA (DT5780 and N6781)

 $2 \ x \ 100$ MS/s 14 bit ADC

10 ns time stamp resolution

•MC²Analyzer Control Software

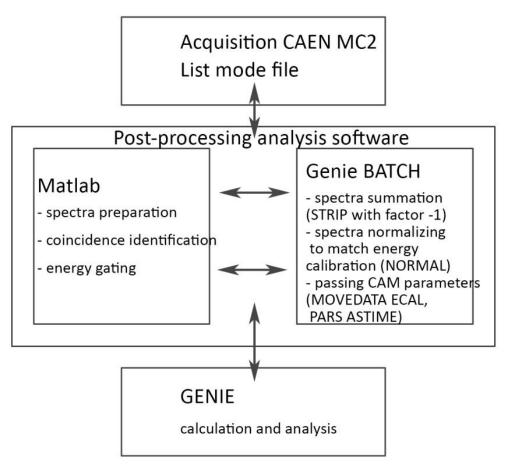
graphical interface for DPP/PHA

DT5780 front view

List mode spectrum acquisition

- Each event is recorded with its energy and timestamp (when it hit the detector)
- In our case timestamp is time in units of 10 ns

Normal spectrum - long exposure photograph


List mode spectrum - video

Timestamp	Energy
29469567	7188
29631038	166
39847353	1029
40560649	6986
42757345	1438
43354128	4594
45868475	1265
46434394	522
46765219	3148
47342918	1272
48050647	202
49174601	1097
49342539	183
50014278	387

Analysis software

- Acquisition controlled by CAEN MC²Analyzer Control Software
- Data recorded in a list mode file
- Data analysis performed in postprocessing using MATLAB based software that creates two energy spectra out of list mode files
- Coincidence spectra identified based on the selected coincidence resolving time and optional energy gating
- All the spectra are saved in .TKA format and then converted to GENIE 2000 .CAM
- Spectrum analysis (peak search, calibrations, activity calculation ...) done using GENIE 2000 software

Analysis software

🔺 c

- GUI
- easy to change between different detector systems
- Produces Genie .CAM file with all parameters needed (live time, real time, acquisition start date ...)

lata_input				
		NuCLEGeS		
Select Ch	0 data	LEGe3	Acquisiti	on stop time:
			Max	time (s):
Select Ch	1 data	LEGe2		18446744073709551615
Coincidence				
Resolving time (µs):	1.4	Ch 0 ene	ergy calibration	C:\GENIE2K\CAMFILES\lege3_CAEN.CNF
Delay time (µs):	0			
Energy gated		Ch 1 energy calibration		C:\GENIE2K\CAMFILES\lege2_CAEN.CNF
LLD (keV):	0			
ULD (keV):	0	Trigge	er HoldOFF (µs):	2.5
Anticoincidence		Done		