

Gamma Spectrometry at DTU Nutech

Sven Nielsen

NKS GammaSpec 2016 Seminar, Rømskog Spa, Norway

DTU Nutech Center for Nuclear Technologies

Status of gamma lab for routine analyses

- Nutech's laboratories including the gamma laboratory for routine measurements were renovated during 2015-2016 requiring temporary movement of gamma detector systems to other labs
- Renovation comprised painting of walls and ceiling, new light, shelves and door, aluminium sheet on floor, and a ventilation system that was later removed
- Renovation work was significantly delayed
- Liquid nitrogen is now piped into the lab which has reduced the time needed to fill dewars considerably by enabling several dewars to be filled simultaneously and avoiding use of 120-L transport containers
- Oxygen sensor in the gamma lab is connected to valves for nitrogen flow which stop automatically when concentration drops below limit
- Dehumidifying unit reduces humidity in lab air and thus formation of ice around detector cold fingers without collar in dewars, problem during summer with high levels of moisture in air
- Additional detectors acquired and all recalibrated during June-August 2016 with mixed-nuclide standard preparing for change of spectrum analysis procedure from old in-house method to Genie2000 combined with EFFTRAN

DTU

Gamma laboratory before renovation

DTU Nutech, Technical University of Denmark

Lead Shields

Ge Detector Specifications

Die mid	Draducer	Maan		Fwhm	Other
RISØ IO.	Producer	rear	Efficiency	(Kev)	Other
1	Ortec	1986	38%	1.8	1.3 mm Al window
2	Ortec	1986	35%	1.8	1.3 mm Al window
3	Ortec	1986	33%	1.9	Low energy, 0.5 mm Be window
4	Ortec	1986	33%	1.9	Low energy, 0.5 mm Be window
5	Canberra	1987	35%/180 cm ³	2.0	Low energy, Mg well, low background
6	Canberra	1998	118 cm ³	1.8	Low energy, 0.5 mm carbon epoxy, low background
7	Canberra	2001	260 cm ³	2.3	Low energy, AI well, low background
414	PGT	1979	25%	1.8	Ge(Li)
423	PGT	1978	27%	2.0	Ge(Li)
952	Ortec	1995	37%	1.8	Low energy, 0.5 mm Be window, low background

DTU Nutech, Technical University of Denmark

Sample Geometries

- 1-L Marinelli beaker (0.6-1 L)
- 210 mL cylindrical beaker (range 20-200 mL)
- 400 mL cylindrical beaker (range 20-390 mL)
- 25 mL Petri dish (5, 10 and 15 mL)
- 70 mL Petri dish (20-65 mL)
- 10 mL vial (range 1-8 mL)
- 2 mL vial (range 0.2-2 mL)

Software for Spectrum Analysis

- Home-made software, developed since 1970's, implemented first in Algol programming language on main-frame computer, later in C on personal computer
- Peak search based on values of second derivative of smoothed spectrum
- Peak-area calculation based on simple summation of smoothed spectrum counts over peak channels minus background, fitting of doublets
- Accuracy of peak-area calculation method compared with other procedures (1998)

----- Måling nr. 405486 ------1: Sample type: Milk 2: Date : 2009-Aug 3: Location : W-Jutland 3 6: Sample ID : 20090327 Res.el.væqt: 2.0000 kg drv 1: Detektor : 4, 4 2: Måleperiode: 20090812.1138,20090817.0847 3: Fyldning : -0.40004: Vægtfylde : 0.6100 5: Energikal. : 2.0606, 0.6687 6: Måletid 421797 : Spektrum: 4000 kanaler TOPAREAL fil A -> B, t = 1.5, max.eta = 40 % 41 - 5979 kan., delta = 2.5 keV br. fra kalib. w1: 5, w2: 13, udglat = 3 Isotoptabel indeholder 140 isotoper Milk from Videbæk august 2009 Spektrum nr. 405486, detektor 4, kalibrering 4 Kan: KeV: w:(w0) b: Bagg: Eta: cps*1000: Eta: Bg(100%) Vfk.: Bg(vf): 438 761 510.6 7295.0 6(6) 1.2 1.81 9.9 -0.22 100.0 439 (7) 2.525.41 1.0 5.25 11.2 0.303 0.932 0.283(3)907 608.9 7(7) 1.9 2.96 5.5 -0.09 100.0 986 661.2 7(7) 1.6 10.14 4.4 0.739 0.940 0.695(4)2180 1459.8 9(9) 2.2 2.81 3.7 655.66 0.2 92.579 0.958 88.733 (6) 2634 1763.0 10(10) 2.9 0.87 9.6 -0.13 100.0 0.00 100.0 3905 2613.4 13(13) 3.1 1.69 4.5

Sample output

Data no.	Software	Туре	DF	Т	χ^2 -Reduced	Sign.	
1	CompAct	Simple	21	15.9	0.76	ns	
2	GammaVision	Simple	21	202	9.62	***	
3	GammaVision	Simple	21	195	9.29	***	
4	GammaVision	Simple	21	21.9	1.04	ns	
5	Genie-PC	Simple	21	40.0	1.90	*	
5	Genie-PC	Simple	21	38.5	1.83	*	
7	C-Base	Simple	21	38.2	1.82	*	
3	Genie-PC	Fitting	21	18.4	0.88	ns	
	GAMANAL	Fitting	20	32.1	1.61	ns	
10	GRILS	Fitting	20	269	13.5	***	
11	EMCAPLUS	Fitting	21	11.0	0.52	ns	
12	ANSP	Fitting	21	9.8	0.47	*	
13	GammaTrac	Fitting	21	21.0	1.00	ns	
14	GammaTrac	Fitting	21	53.9	2.57	***	
15	GAMMA-96	Other	21	19.1	0.91	ns	

Fig. 3. Plot of relative average accuracies of peak-area ratios for the data sets.

DTU Nutech, Technical University of Denmark

DTU

Efficiency Calibration for gamma spec

- Calibration based on measurements in standardized geometries of mixed radionuclide gamma-ray reference solutions and K₂CO₃ standard, e.g. ²⁴¹Am, ¹⁰⁹Cd, ⁵⁷Co, ¹³⁹Ce, ⁵¹Cr, ¹¹³Sn, ⁸⁵Sr, ¹³⁷Cs, ⁸⁸Y and ⁶⁰Co
- Calibration curves fitted to measured efficiencies (photons/count) using polynomial expressions

Detector 423 efficiency calibration

True Coincidence Summing Correction

 True coincidence summing correction factors for gamma spectrometry determined experimentally as deviations between observed efficiencies and calibration curves

	Energy	-4.8 cm	-4.4 cm	-3.8 cm	-2.7 cm	-0.8 cm	
Nuclide	(keV)	filling	filling	filling	filling	filling	
57Co	122	0.98	0.99	0.99	0.99	1.00	
57Co	136	0.93	0.89	0.93	0.96	0.95	
60Co	1173	1.00	1.00	1.00	1.00	1.00	
60Co	1332	0.99	0.99	1.00	1.00	0.99	
134Cs	605	1.18	1.17	1.15	1.14	1.15	
134Cs	796	1.13	1.13	1.11	1.10	1.11	
134Cs	802	1.22	1.23	1.21	1.18	1.18	
226Ra	186	0.47	0.47	0.49	0.48	0.46	
226Ra	352	1.05	1.04	1.07	1.04	1.04	
226Ra	609	1.17	1.16	1.16	1.15	1.14	
226Ra	1765	0.95	0.95	1.00	0.99	0.99	

Excerpt of coincidence summing correction factor table for five different fillings of the 210 mL geometry for detector 423

Density Correction

DTU

- Density correction based on a mathematical model of Ge detector, sample geometry and density (Lippert 1983)
- Correction factor CF calculated as

 $CF = e^{\rho - 1} \cdot xabs \cdot e^{m_0 - m_1 ln E_{\gamma}}$

- Where ρ is sample density, xabs characteristic length for sample geometry, m_0 and m_1 constants, and E_v gamma energy.
- Example correction factors

Gamma energy	210 mL cylinder	210 mL cylinder
(keV)	178 mL	59 mL
100	1.33	1.13
500	1.14	1.06
1000	1.10	1.04
1500	1.08	1.03

 Furthermore, for measurements of ²¹⁰Pb at 47 keV, correction for self absorption is applied by experimental determination using a ²¹⁰Pb point source (Cutshall et al, 1983)

Gamma lab after renovation

DTU

Calibration 2016

- 11 Ge detectors
- 7 standard sample containers, 3-5 fillings each
- About 250 calibration spectra
- AREVA calibration solution containing ²⁴¹Am, ¹⁰⁹Cd, ¹³⁹Ce, ⁵⁷Co, ⁶⁰Co, ⁵¹Cr, ¹³⁷Cs, ⁵⁴Mn, ¹¹³Sn, ⁸⁵Sr, ⁸⁸Y, ⁶⁵Zn (range 60 – 1836 keV)
- Using Genie2000 and EFFTRAN to generate certificate files and nuclide libraries free from coincidence summing effects
- Checking quality of calibration by analysing calibration solutions as samples and comparing results with reference values

EFFTRAN coincidence summing corrections 210 mL geometry, 20 mL filling

Nuclide	E (keV)	Correction factors										
		det001	det003	det004	det005	det006	det008	det009	det010	det083	det414	det952
AM-241	59.5	1.000	1.010	1.010	1.001	1.011	1.012	1.012	1.012	1.000	1.000	1.010
CD-109	88.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
CO-57	122.1	1.000	1.024	1.024	1.001	1.027	1.028	1.028	1.028	1.000	1.000	1.024
CO-57	136.5	1.000	0.920	0.921	0.996	0.907	0.899	0.899	0.899	1.000	1.000	0.921
CE-139	165.9	1.002	1.169	1.166	1.093	1.210	1.239	1.239	1.239	1.001	1.001	1.164
CR-51	320.1	1.000	1.002	1.002	1.000	1.002	1.002	1.002	1.002	1.000	1.000	1.002
SN-113	391.7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
SR-85	514.0	1.000	1.069	1.068	1.002	1.083	1.091	1.091	1.091	1.000	1.000	1.068
CS-137	661.7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
MN-54	834.8	1.000	1.003	1.003	1.000	1.003	1.003	1.003	1.003	1.000	1.000	1.003
Y-88	898.0	1.117	1.209	1.206	1.092	1.245	1.287	1.287	1.286	1.141	1.091	1.205
ZN-65	1115.5	1.000	1.013	1.013	1.000	1.014	1.014	1.014	1.015	1.000	1.000	1.013
CO-60	1173.2	1.128	1.132	1.130	1.097	1.152	1.183	1.183	1.182	1.153	1.100	1.130
CO-60	1332.5	1.133	1.138	1.135	1.101	1.160	1.192	1.192	1.191	1.158	1.104	1.135
Y-88	1836.1	1.135	1.229	1.226	1.107	1.276	1.324	1.324	1.323	1.160	1.107	1.225

Percentage difference between reference and measured activities for 210 mL geometry, GY200_163

Percentage difference between reference and measured activities for Petri dish geometry PET25_15

Nuclides

Percentage difference between reference and measured activities with EFFTRAN and LabSOCS for Detector 8, 210 mL geometry GY200_20

Percentage difference between reference and measured activities with EFFTRAN and LabSOCS for Detector 9, 400 mL geometry WH400_299

Percentage difference between reference and measured activities with EFFTRAN and LabSOCS for Detector 10, Petri dish geometry PET70_60

Future

- Complete and validate calibration of Ge detectors
- Establish user-friendly system for analysis based on Genie2000 and EFFTRAN/MEFFTRAN
- Expand accreditation to include gamma spectrum analysis