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True Coincidence Summing Corrections - Theory
1. Introduction - high resolution gamma-ray spectrometry

- low efficiency measurements
- high efficiency measurements 
- need for coincidence summing corrections

2. Physics of coincidence summing effects
- summing in
- summing out
- intuitive computation of coincidence summing

3. Decay data
4. Efficiencies

- quasi-point source approximation
- volume sources

5. Methods for evaluation of coincidence summing corrections
- Recursive formulae (Andreev type)
- Matrix formulation (Semkow type)
- Deterministic approach
- Random sampling of the decay path ( => separate lecture)

6. Application - GESPECOR
7. Summary



  

1. Introduction

   Gamma-ray spectrometry with high resolution detectors:
- peak energies => nuclide identification
- peak count rate => nuclide activity
   - Relative measurements

   R, R0 =count rate for sample and standard
  A, A0 =nuclide activity for sample and standard

   - Measurements based on an efficiency calibration curve
 = gamma emission probability

 = full energy peak efficiency (FEPE)
    - FEPE calibration depends on the possibility to obtain ε(E) for any 

energy from the measured values ε(Ei) for several energies Ei

- relatively weak self-attenuation => no need for chemical preparation
=> multielemental, nondestructive analysis

0
0 )(

)( A
ER
ERA ⋅=

C
EPE

ERA ⋅
⋅

=
)()(

)(

γε
)(EPγ

  

)(Eε



  

Low efficiency measurements
Data source: Gamma-ray 
spectrum catalogue, INEEL65 cm3 Ge(Li)133Ba

Data source: BIMP Monographie -5
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Coincidence summing effects responsible for the difference between the spectra
- peaks not associated with gamma emission of 133Ba
- distortion of the count rate in the peaks of the gamma photons of 133Ba
=> the FEP efficiency from the efficiency calibration curve not appropriate
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Consequences:
 coincidence summing corrections required for the evaluation of the activity
 problems in nuclide identification (automatic analysis based on nuclide libraries)

- a pure sum peak is erroneously attributed to a nuclide not present in the
sample

- a nuclide is not recognized due to an incorrect match of the count rate
- incorrect activity evaluation due to unaccounted peak interferences

=> Need for coincidence summing corrections!



  

2. Physics of coincidence summing effects

Inability of the detector to record independently two photons very close in 
time
Coincidence resolving time of a HPGe spectrometer – microseconds

- charge collection, signal forming and analysis
Typical lifetime of excited nuclear states – nanoseconds or less

- photons emitted quickly one after the other in nuclear deexcitation 
cascades

Mean time between two successive decays of different nuclei for a source with 
A = 100 kBq – 10 microseconds; mean time between the registration 
of signals due to the radiations emitted by different nuclei longer 
(efficiency)

⇒ n photons interact in the detector within the resolving time 
⇒ a single signal of the detector instead of n separate signals
⇒ the signal corresponds to a channel of energy

EDsum = ED1 + ED2 + … + EDn 
EDk = energy deposited by the k-th photon (energy of the photon Ek) 

in the detector (in the peak, EDk=Ek or in the total spectrum EDk < Ek )



  

If EDk = Ek => in the absence of coincidence effects a count is recorded in the peak of 
energy Ek 

=> due to the detection of the other photons, the count is no longer recorded in 
the peak

=> coincidence losses from the peak
=> the count rate in the peak of energy Ek is decreased due to 

coincidence losses
If each photon deposited the complete energy in the detector, ED1=E1,  EDn=En, then a 
count is recorded in the sum peak of energy Es=E1+E2+ … +En

=> summing in contributions
If the nuclide emits a photons with energy Es=E1+E2+ … +En

=> additional signals in the peak
If the nuclide does not emit photons with energy Es=E1+E2+ … +En

=> a pure sum peak appears

E1

E2

E3

Ex: E1 and E2 interact both with the detector:

1. ED1=E1, ED2<E2 coincidence losses from E1 peak
2. ED2=E2, ED1<E1 coincidence losses from E2 peak
3. ED1=E1, ED2=E2 coincidence summing in the E3 peak (pure 

sum peak with energy E1+E2 if no E3 transition)
4. ED1<E1, ED2<E2 replacement of 2 counts with one in the 

Compton region of the spectrum
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- The three photons are emitted practically in the same 
time in various directions (with an angular correlation)

True Coincidences
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time in various directions (with an angular correlation)

True Coincidences



  

- The three photons are emitted practically in the same 
time in various directions (with an angular correlation)
-Sometimes it happens that two photons interact with 
the detector (in closed end coaxial detectors the 
probability that three photons interact in the detector is 
much smaller than that for two photons)

True Coincidences



  

- The three photons are emitted practically in the same 
time in various directions (with an angular correlation)
-Sometimes it happens that two photons interact with 
the detector (in closed end coaxial detectors the 
probability that three photons interact in the detector is 
much smaller than that for two photons)
-The probability of interaction depends on the detector 
dimensions and on the detector efficiency
-It is highest in the case of well-type detectors
- Coincidence summing effects – higher in  high 
efficiency conditions (solid angle, intrinsic efficiency)

True Coincidences



  

- Coincidence summing effects depend on the decay 
scheme and are specific to each transition

True Coincidences

The groups of photons that 
are emitted together and their 
joint emission probabilities 
are different for the three 
decay schemes



  

- Contributions to coincidence summing from all the 
radiations following decay

- gamma from transitions, X-rays (EC, 
conversion electrons)

- radiation scattered in the source, shield

- annihilation photons

- X rays excited in the shield, in the matrix 

- beta particles, bremsstrahlung etc

True Coincidences

- Relative contribution independent of A!



  

- Contributions to total efficiency of the “blue” photon 
in the absence of coincidences: the same processes as 
for coincidence summing

- direct gamma interaction with the detector

- radiation scattered in the source, shield

- annihilation photons (in case of positron decay)

- X rays excited in the shield, in the matrix 

- beta particles, bremsstrahlung etc

True coincidence losses from the peak depend on the total efficiency



  

- Sum peak contribution of the “blue” 
and “red” photons is obtained in the 
same processes in which in the absence 
of coincidences each photon would be 
registered in the peak

Coincidence summing  contributions to sum peaks depend on the peak efficiency



  

Random coincidences

Two different nuclei emit radiations close in time 
one by the other by chance
- Important when the count rate is high
- The effect can be avoided by decreasing the 
count rate, e.g. measuring the source at big 
distances from the detector

- The displacement of the source far from the 
detector is not a good choice for low level samples; 
therefore for low level samples coincidence 
summing effects can not be avoided (true 
coincidence summing corrections are independent 
of the activity of the source)
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Ba-133 EC decay

  E (keV)   Iγ (per 100 Dis)
  53.1622     2.14±0.03
  79.6142     2.65 ±0.05
  80.9979   32.9 ±0.3
160.6121     0.638 ±0.004
223.2368     0.453 ±0.003
276.3989     7.16 ±0.05
302.8508   18.34 ±0.13
356.0129   62.05 ±0.19
383.8485     8.94 ±0.06

Data source: Nucleide



  

302 keV; in the absence of coincidences R(302)= ε(302) Pγ(302) A 

1 Kα(EC4)-53-302-81
2    Kα(EC4)-53-302-Kα(81)
3    Kα(EC4)-53-302-Kβ(81)
4    Kα(EC4)-53-302-other(81) (other => no signal in detector)
5    Kα(EC4)- Kα(53)-302-81
6    Kα(EC4)- Kα(53)-302- Kα(81)
And so on, ending with 
48  other(EC4)-other(53)-302-other(81)

But: 302 keV photon is emitted together with other radiations!

Other decay paths start by feeding the 383 keV level (EC3): 

49   Kα(EC3)-302-81
50, 51, 52, 53, 54, 55, 56, 57, 58, 59
60   other(EC3)-302-other(81)



  

Each combination i has a specific joint emission probability pi !

Pγ(302)=pPath 1+pPath 2+pPath 3+…+pPath 60

Each combination has a specific probability to contribute to the
count-rate in the 302 keV peak, e.g. Path 1 (combination 1):
Kα(EC4)-53-302-81 =>  

      εPath 1=[1-η(Kα)][1- η(53)] ε(302) [1- η(81)]

      η(E)= total detection efficiency for photons of energy E

The detector cannot resolve the signals produced by the photons 
emitted along a given decay path – a single signal, corresponding 
to the total energy delivered to the detector is produced

Volume sources: more complex – effective total efficiency is needed
Additional complication – angular correlation of photons

εPath i < ε(302)  => coincidence losses from the 302 keV peak



  

Ba-133 EC decay

  E (keV)   Iγ (per 100 Dis)
  53.1622     2.14±0.03
  79.6142     2.65 ±0.05
  80.9979   32.9 ±0.3
160.6121     0.638 ±0.004
223.2368     0.453 ±0.003
276.3989     7.16 ±0.05
302.8508   18.34 ±0.13
356.0129   62.05 ±0.19
383.8485     8.94 ±0.06

Data source: Nucleide



  

Sum peak contributions to the 302 keV peak: 
Combinations like:
Kα(EC4)-53-223-79-81 contribute to the 302 keV peak
with a probability [1- η(Kα)][1-η(53)] ε(223) ε(79) [1-η(81)]
Other 59 similar contributions

Generalization:
1. On each path including a direct transition with emission of the 302 keV 

photon:
εPath i = ε(302) * Product of [1- η(radiation k)]

where radiation k corresponds to each of the radiations from the Path i 
that accompany the 302 keV photon

2. On each path with sum peak contribution (here only 223+79)
εPath j = ε(s1)*.. ε(sp) * Product of [1- η(radiation k)]

where radiations s1… sp corresponds to each of the radiations from the 
Path j contributing to the sum peak 



  

3. The probability of a count in the 302 keV peak for one decay is the sum of the 
probability of each path with the probability of a count on that path:

Sum (PPath n * εPath n ) 
n denotes any path 1 to 60 for direct gamma emission plus other 60 paths for 
sum peak combinations

4. Developing the products of efficiencies along each path and regrouping the 
terms
Sum (PPath n*εPath n ) = Pγ(302) *ε(302)         direct contribution
– Sum [Pγ(302),j*ε(302)*η(j)] first order losses
+ Sum [Pγ(302),j,k*ε(302)*η(j)*η(k)] -… + … higher order contrib.
+ Pγ(223), γ(79) *ε(223)*ε(79)      first order summing in
– Sum [Pγ(223), γ(79),j *ε(223)*ε(79)*η(j)] 1-st losses from S.P.
+ Sum [Pγ(223), γ(79),j,k *ε(223)*ε(79)*η(j)*η(k)] - … higher order losses from 

sum peak contribution
Pi,j , Pi,j,k  probability of emission of the group of photons (i,j), (i,j,k)



  

5. Volume sources
-Efficiencies depend on the emission point
-All efficiencies are affected simultaneously 
by the position of the emission point

Source

Detector

⇒Products of efficiencies should be replaced by suitable integrals
Example: 
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In the presence of coincidence summing
R(E) ≠ ε(E) Pγ(E) A, but
R(E) = FC ε(E) Pγ(E) A
FC = coincidence summing correction factor, depends on:
      - decay scheme parameters
      - peak and total efficiency for the set of energies of 
all the photons

The case of quasi-point sources:
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In the correction formula the peak and total efficiencies for the 
complete source are required; they can be directly measured



  

The case of extended sources:
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In this case integrals of efficiencies are required; they can not be 
expressed as directly measurable properties of the source and 
experimental configuration (Sima and Arnold, ARI 53 (2000) 51)



  

3. Decay data
In the absence of coincidence summing the count rate in the peak of energy 
E depends on a single parameter of the decay scheme, Pγ(E)
- the uncertainty of the activity computing using R(E)= ε(E) Pγ(E) A 
depends only on the uncertainty of a single parameter of the decay scheme
- Pγ(E) can be measured relatively simply
- standardized values should be used for compatibility

In the presence of coincidence summing it is not sufficient to know Pγ(E)
- it is not sufficient to know all Pγ(Ei) for all the emitted photons
- the complete decay scheme is required
- R(E) depends simultaneously on many parameters of the decay 
sheme => for the evaluation of the uncertainty of A the complete 
covariance matrix of the decay scheme parameters is required!

The preparation of the decay scheme of a nuclide => difficult
- only simple gamma spectra not sufficient
- combined measurements (X rays, conversion electrons,
decay particles α, β, coincidence gating etc)

?



  

International Committee on Radionuclide Metrology (ICRM)
President: Dr. Pierino De Felice

http://physics.nist.gov/Divisions/Div846/ICRM/
Recommendations for the development of a consistent set of decay data

Decay Data Evaluation Project  
http://www.nucleide.org/DDEP.htm

Careful evaluation
Periodic updates

NUCLEIDE database and software (evolved from Tables des Radionucleides) – 
LNHB
http://www.nucleide.org/ 

BIPM Monographie – 5   
http://www.nucleide.org/Publications/monographie_bipm-5.htm

BNL, ENSDF – larger number of nuclides, less dedicated evaluations
Nuclear Data Sheets

http://www.nndc.bnl.gov/ensdf/



  

Definitions (Introduction –Table de radionucleides CEA–DETECS/LNHB)

Gamma transition – total probability Pg = Pγ + Pce + Pe+e-

Total probability=probability for γ emission + probability for conversion 
electron + probability of electron-positron pair emission

Conversion coefficient:

αt= αK+ αL+ αM+… = Pce / Pγ 

(conversion on K, L, M, … atomic shells);  

Internal pair conversion coefficient:

απ relative emission probability of the pair (10-3 - 10-4)

Gamma emission probability in function of transition probability:
Pγ= Pg / (1+αt)

Conversion electron emission probability
Pce = αt Pg / (1+αt)

Conversion electron emission from K atomic shell
PceK = αK Pg / (1+αt)

γ
e

pair



  

X-ray emission after the creation of a vacancy on the K shell:
   - processes: emission of X-ray and emission of Auger electrons
   - Fluorescence yield ωK=X-ray emission probability when the 
vacancy is filled

- Auger emission probability PAk = 1 – ωK

   - similar processes after creation of a vacancy on the L shell (or subshells)

Probability of a K X-ray emission in a deexcitation transition
PXK = ωK αK Pg / (1+αt)

Probability of a K X-ray emission in a EC (electron capture) decay on the j-th 
level of the daughter:

PXK = ωK Pεj PK

PK – probability of electron capture from K shell if the electron capture 
transition was on the j-th level of the daughter nucleus (probability Pεj) 



  

4. Efficiencies

Quasi-point source: Ei and Ej

   - probability of completely absorbing both photons in the 
detector per one decay:

Pij ε(Ei) ε(Ej) 
(angular correlation neglected)
= probability of a count in the sum peak per decay

   - probability of completely absorbing  Ei  and incompletely 
absorbing Ej per decay:

Pij ε(Ei) η(Ej) 
= probability of losing a count from the peak of 

energy Ej per decay

S

Detector

Peak and total efficiencies for the complete source are required for all the 
radiations emitted along all the decay paths of interest

Measurement of FEP efficiency ε  – routinely done



  

Measurement of total efficiency η – difficult
     - sources emitting a single radiation required
     - preferably evaluation of the ratio P/T of the FEPE to total efficiency

- knowledge of the activity of the source not required
- weak dependence on the position of the emission point
- weaker dependence on energy than each of the efficiencies – better 
approximated

Computation of  η or better P/T
- Monte Carlo 

-problem: the effect of the dead layer – partially active: 
     Arnold and Sima, ARI 60 (2004) 167
     Dryak et al., ARI 68  (2010) 1451

- Simplified procedures – De Felice et al., ARI 52 (2000) 745

 



  

Angular correlation effect
- origin
-magnitude higher for pure sum peaks
- environmental samples
(Roteta et al, NIMA 369 (1996) 665)

Sum peak 1173+1332 keV 60Co
Source: Sima, ARI 47 (1996) 919

  The required efficiencies are no longer directly 
accesible to measurement, e.g.
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Extended sources

Integrals of products of efficiencies are required, e.g. 
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Weighting of the contribution of the “blue” photon due 
to the requirement of peak detection of the “red” photon:
-solid angle (the contribution of emission point 2 smaller 
than the contribution of point 1 to the effective total 
efficiency)
-self-attenuation (emission point 3 does not contribute to 
the effective total efficiency, but contributes to the usual 
total efficiency)

⇒Effective total efficiency always higher than common 
total efficiency
⇒The differences increase for lower Ei energies

Example:
1000 cm3 Marinelli beaker measured with a 50% relative efficiency HPGe
(Arnold and Sima, J. Radioanal. Nucl. Chem. 248 (2001) 365)
For Ei=50 keV the effective total efficiency for a water sample higher by 44% to 26% than 
the common total efficiency when Ej varies from 50 to 2000 keV
For Ei=50 keV the same differences are by 25% to 16%
Solid angle weighting and self-attenuation weighting have roughly equal contributions

Higher differences are obtained for the term corresponding to sum peak contributions

Source

Detector

1
23



  

Correct computations – by Monte Carlo simulation
Décombaz et al., NIMA 312 (1992) 152; Sima and Arnold, 53 (2000) 51; Laborie 
et al., ARI 53 (2000) 57; Sima, Arnold and Dovlete, J. Radioanal. Nucl. Chem., 
244 (2001) 359; García-Talavera et al., ARI 54 (2001) 769; Berlizov, ACS Symp. 
Series 945 (2006) 183; Capogni et al., ARI 68 (2010) 1428.
Measurements – map of the point source efficiencies in the sample – tedious
Debertin and Schötzig, NIM 158 (1979) 471
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Blaauw and Gelsema, NIMA 505 (2003) 315
Third efficiency curve, or LS curve (ORTEC)



  

Blaauw and Gelsema evaluate the l(E) curve on the basis of the analysis of an 
experimental spectrum with coincidence summing effects
Vidmar and Korun develop a Monte Carlo procedure for this evaluation; they 
apply EFFTRAN, based on the effective solid angle method (Vidmar and 
Korun, NIMA 556 (2006) 543)
Other methods:
-Use of a map of point source efficiencies and of a computed P/T ratio 
neglecting the changes due to the sample (Kolotov and Koskelo, JRNC 233 
(1998) 95)
-Use of the transfer method for the evaluation of the efficiencies inside of the 
sample (Piton, Lepy et al., ARI 52 (2000) 791) – implemented in ETNA
-The application of the predictions of the virtual point detector model for the 
evaluation of the dependence of the efficiencies on the position (Rizzo and 
Tomarchio, ARI 68 (2010) 1448)
-Application of an exponential approximation for the dependence of the point 
source efficiencies on the emission point (Korun and Martinčič, NIMA 355 
(1995) 600)
-Application of the quasi-point source formulae, with different prescriptions to 
the computation of the P/T, e.g. geometry independent, proportional with the 
ratio of attenuation coefficients (De Felice et al., ARI 52 (2000) 745)  



  

Well-type detectors: very high coincidence summing effects
-small volume samples, big solid angle
=> Effective total efficiency close to the total efficiency
=> Useful analytical approximation for the total efficiency (Sima, NIMA 450 
(2000) 98; refined by Pomme, NIMA 604 (2009) 584) 



  

5. Methods for evaluation of coincidence summing corrections

Decay data should be combined with proper efficiency values
Methods differ by the way in which decay data are evaluated and by the way in 

which they are coupled with efficiencies
Methods for the evaluation of decay data: deterministic and stochastic

Deterministic methods intimately coupling decay data and efficiencies

1. Recursive formulae (Andreev type; Andreev et al., Instr. Exp. Tech. 15 
(1972) 1358)

Detector insensitive to X rays
xt(i,j) transition probability from level i to level j if level i is already populated

; 
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Probability of no signal in the detector 
following the transition if the initial level is 
already populated
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F(i) – probability of decay on level i   
N(i) – probability of populating level i on any path 
without having any signal in the detector
M(k) – probability of any transitions from level k to the 
ground state without having any signal in the detector on 
these transitions (k populated)
A(i,k) – probability that the total energy of the transition 
from level i already populated to level k, in any possible 
sequences, is completely absorbed in the detector, i>k
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Probability of detecting the total energy in the transition from level i to level j 
per one decay is:

Extensions of the procedure and programs: Mc Callum and Coote, NIM 130 
(1975) 189 – program; Debertin and Schötzig, NIM 158 (1979) 471 – inclusion 
of X rays, nuclide decay data (KORDATEN), program KORSUM; Morel et al., 
IJARI 34 (1983) 1115 – volume sources by transfer method, program CORCO; 
Jutier et al., NIMA 580 (2007) 1344 - inclusion of internal pair production
Rigurous procedure, simple programming; disadvantage – complicate coupling 
of the decay data with efficiencies – not appropriate for volume sources and 
Monte Carlo simulation. Does not account for sum peaks corresponding to 
non-connected transitions

2. Matrix formalism (Semkow et al., NIMA 290 (1990) 437)
Ideea: a(i,j) the (i,j) element of a triangular matrix a; b(i,j) similar
Probability of transition from i to j in two successive transitions i to k and k to j 
with total energy absorption in the detector is a(i,k) a(k,j). Probability of 
transition from i to j in two successive transitions for any k, i>k>j is

),)((),)((),(),( 2
1

1
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Probability of transition between the same initial and final level by three 
successive transitions with total energy absorption in the detector is given by 
matrix a3 and so on.
Probability of the transition from any initial to any final level with all possible 
sequences of connected transitions and with the condition that the total energy is 
absorbed in the detector is given by a new matrix A:
A = a + a2 + a3 +… + an

Similarly the transitions from one level to another without any energy 
deposition is given by a matrix
B = 1 + b + b2 + b3 +… + bn

With N=diag[(F B)i  and  M=diag(Bi,1) the matrix of the probability of detecting 
the complete energy in any possible transitions per one decay is given by:
S= N A M

Extensions: Korun and Martinčič, NIMA 325 (1993) 478  – inclusion of X-rays

Advantage: mathematical computation; the complete matrix of total energy 
deposition; disadvantage: intrinsic coupling of decay data and efficiencies, does 
not account for sum peaks from non-connected transitions



  

Deterministic methods decoupling decay data and efficiencies

3. Deterministic calculation of joint emission probabilities
Schima and Hopes, IJARI 34 (1983) 1109 – for pair coincidences

General procedure: Sima and Arnold, ARI 66 (2008) 705
   -any decay scheme with less than 100 levels, 
   -all orders,
   -grouping the contributions by transition levels, not by energy, 
   -inclusion of metastable states,
   -inclusion of sum peaks with X-rays (two groups Kα and Kβ) up to 10 X rays 
contributing,
   -inclusion of the contribution of positron annihilation,
   -simple possibility to include angular correlation
   => Efficient procedure of finding all the possible decay paths, based on graph 
theory methods
Advantage: decoupling of the decay scheme evaluation from the efficiencies => 
appropriate for Monte Carlo evaluation of the efficiencies, the decay data are 
analyzed and the emission probabilities are computed before Monte Carlo 
simulation
=> Implemented in GESPECOR
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=> Efficient solution: search algorithm of 
the breadth-first type applied in solving 
graph theory problems. 

=> Finding the sets defined above 
equivalent with finding the paths that satisfy 
specific conditions in an oriented graph.

Example: 134Cs Problems: 
1. Find all groups M(n) containing n γ 

photons that can be emitted together 
in the same decay act

2. Find all sets S(n)(k1), S(n)(k1,k2), … of 
n photons that can be emitted 
together with the γ photon with index 
k1 or with the pair (k1,k2) …

3. Find all sets U(n)(k1), U(n)(k1,k2), … 
containing n photons in linked 
transitions between the same levels 
as the k1 photon or the same levels as 
the k1 and the k2 photons …

4. Add Kα and Kβ X-rays to the groups 
(when appropriate)
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Example: 134Cs  
1. Find all groups M(n) containing n γ 

photons that can be emitted together 
in the same decay act

M(1) = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, 
{9}, {10}, {11}}

M(2) = {{1,5}, {1,6}, {1,7}, {1,8}, {1,9}, 
{1,10},  {1,11},  {2,8}, {2,11}, {3,9}, 
{3,10}, {3,11}, {4,11}, {5,8}, {5,11}, 
{6,9}, {6,10}, {6,11}, {7,11}, {8,11}, 
{9,11}}

M(3) = {{1,5,8}, {1,5,11}, {1,6,9}, {1,6,10}, 
{1,6,11}, {1,7,11}, {1,8,11}, {1,9,11}, 
{2,8,11}, {3,9,11}, {5,8,11}, {6,9,11}}

M(4) = {{1,5,8,11}, {1,6,9,11}}

Efficient search algorithm
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Example: 134Cs 2. Find all sets S(n)(k1), S(n)(k1,k2), … of 
n photons that can be emitted 
together with the γ photon with index 
k1 or with the pair (k1,k2) …

If S belongs to the set S(n)(k1), then {k1,S} 
belongs to M(n+1); if S belongs to the 
set S(n)(k1,k2), then {k1 ,k2,S} belongs 
to M(n+2) 

Example: k=5
M(2) = {{1, 5}, {1,6}, {1,7}, {1,8}, {1,9}, 

{1,10},  {1,11},  {2,8}, {2,11}, {3,9}, 
{3,10}, {3,11}, {4,11}, {5,8}, {5,11}, 
{6,9}, {6,10}, {6,11}, {7,11}, {8,11}, 
{9,11}}

=> S(1)(5) ={{1}, {8}, {11}}
M(3) = {{1, 5,8}, {1, 5,11}, {1,6,9}, {1,6,10}, 

{1,6,11}, {1,7,11}, {1,8,11}, {1,9,11}, 
{2,8,11}, {3,9,11}, {5,8,11}, {6,9,11}}

=> S(2)(5) ={{1,8}, {1,11}, {8,11}}
M(4) = {{1, 5,8,11}, {1,6,9,11}}
=> S(3)(5) ={{1,8,11}}

Photons from the set S(n)(k1) give n-th order coincidence losses 
from the k1 peak.
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Example: 134Cs 3. Find all sets U(n)(k1), U(n)(k1,k2), … 
containing n photons in linked 
transitions between the same levels 
as the k1 photon or the same levels as 
the k1 and the k2 photons …

Photon groups from U(n)(k1) give sum peak 
contributions in the peak of k1 
photon, photon groups from U(n)

(k1,k2) give sum peak contributions to 
the sum peak of the photons k1 and k2

Example: k=4
U(2)(4) = {{1,7}, {2,8}, {3,9}} 
U(3)(4) = {{1,5,8}, {1,6,9}} 

Losses from sum peaks:
If {l1,l2,..ln} belongs to the set U(n)(k1), then 

S(m)(k1)=S(m)(l1,l2,..ln); if {l1,l2,..ln} 
belongs to the set U(n)(k1,k2), then S(m)

(k1,k2) = S(m)(l1,l2,..ln)



  

The groups M, S, U are efficiently found even for complex decay schemes 
(100 levels) by an algorithm similar with algorithms developed for solving 
path problems in graph theory.

After finding the groups, the joint emission probabilities are easily 
computed.

The count rate in the peak of photon i in the case of a point source is:
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In the case of volume sources the products of efficiencies are replaced by integrals 
of the products of efficiencies



  

Other deterministic algorithms:
Novković et al., NIMA 578 (2007) 207, based on symbolic list manipulation
     - in case of complex decay schemes, difficult to combine various decay 

paths that correspond in fact to transitions between the same levels

Test of several algorithms for compatibility:
Kanisch, Vidmar and Sima, ARI 67 (2009) 1952
   - the algorithms of Sima and Arnold (GESPECOR), Novković, and Vidmar 
and Kanisch are equivalent
   - the algorithms of Andreev and Semkow type are equivalent with the others 
except for the fact that they do not predict sum peaks for non-linked 
transitions and sum peaks with X-rays contributions



  

Random simulation of the decay paths – see the separate lecture



  

6. Application - GESPECOR
Computation of coincidence summing corrections with GESPECOR:
   Sima, Arnold and Dovlete, JRNC 248 (2001) 359; Sima and Arnold, ARI 
53 (2001) 51

   - automatic preparation of the required decay data for approx. 250 
nuclides
        - deterministic method of computation (Sima and Arnold, ARI 66 
(2008) 705)
        - includes all higher order terms
        - includes sum peaks with K X-ray contribution (Arnold and Sima, 
ARI 64 (2006) 1297)

   - realistic description of the detector and sample, with arbitrary, but 
known, composition

- closed end coaxial and well-type  HPGE detectors
- cylindrical and Marinelli beaker samples + many extensions

   - peak oriented computation of the coincidence summing correction 
factors  



  

- Computation of the efficiencies:
   - realistic Monte Carlo computation of the effective total efficiency and of the 
weighted peak efficiencies (Arnold and Sima, JRNC 248 (2001) 365)

- powerful variance reduction techniques implemented
   - fast computation for quasi-point sources using for peak and total efficiencies 
input files instead of Monte Carlo computation
   - fast computation for well-type detectors based on an analytic formula for the 
total efficiency (Sima, NIMA 450 (2000) 98) and on measured peak efficiency
   - convenient possibility to implement angular correlation

Validated both with respect to experimental data and with respect to other methods 
of computation (Kanisch et al., ARI 67 (2009) 1952)



  
Selection of the nuclide for preparing the decay data file including joint 
emission probabilities for groups of photons



  
Part of the decay data file for the peak with energy 302 keV of 133Ba



  
Detector data for a well-type detector



  
Geometry input file for a Marinelli beaker sample



  
Main interface of GESPECOR for standard computation of coincidence 
summing corrections



  
Selection of the input peak efficiency data file for the computation of the 
coincidence summing corrections in the case of quasi-point sources



  
Selection of the input peak efficiency data file for the computation of the 
coincidence summing corrections in the case of analytical computation 
of the total efficiency for well-type detectors



  

Coincidence summing effects are very important in present day gamma-
spectrometric measurements:
- tendency to use high efficiency detectors
- tendency to choose close-to-detector counting geometries

The effects depend on the decay data of the nuclide, on the detector 
efficiency, on the sample

The effects are present both for calibration and for measurement

For activity assessment the coincidence summing correction factors FC for 
principal peaks should be evaluated

For spectrum analysis (especially using automatic procedures) all pure sum 
peaks should be properly assigned. Peak interferences should be removed

Presently there are tools that can be applied reliably for the evaluation of 
coincidence summing corrections

7. Summary
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