

Using First Responder Software for Teaching and Emergency Response

NKS-B GammaRayX, 20-21 Oct 2021 Sigurður Emil Pálsson

FACULTY OF PHYSICAL SCIENCES

• Why teach part time for 38 years?

- Why teach part time for 38 years?
 - Well, it's an invigorating way to go back to basics!

Introduction

What does a gamma spectrum show?

- Radiation from a <u>nuclide</u>
 - Interactions within its <u>atom</u>
 - Interactions within the source
 - Interactions with the <u>environment</u> (of source and detector)
 - Interactions within the detector

If one is <u>only interested in the nuclide</u>, the <u>other factors come as disturbances that must be</u> <u>corrected for</u>.

But the interactions can provide <u>valuable information about the atom, the source the</u> <u>environment</u> (including <u>shielding</u> of the source) and <u>detector</u>.

Greina - útgáfa z.3.0	Skrá: E15Y812A
Mælitæki: G-2 916A 5 cm Pb M Fjöldi rása: 4096 lengd: 16928	CA # 2 Greiningardagur: 17-03-1996
*** set B14/95 812-III 0-2,5 33,2g	52
Upphaf talningar: 20:10:55 Mæling vistuð: 14:06	10.03.96 lt: 150352 12.03.96 rt: 150479.1 (1d 17 klst 48 mín)
Viðmiðunardagur (dd mm áá): Rýrnunartími: 130 dagar I	1.11.95 dt: .08 % Rýrnunarstuðull: .9918774
st	ærð og gerð sýnis
Tegund íláts: DÓS Massi: jafnvægis: 3 þurrvigt: 3 Eðlismassi: .6461538	Rúmmál: 52 ml Heimtur: 3.456548 % 3.6 g 3.2 g leiðréttingarstuðull: .9799216 Niðurstöður
Miðrás: 1324 (np: 1	1 nb: 10)
1312 189 1313 207 1314 175 1315 194 1316 155 1317 198 1318 181 ***** 1320 209 ***** 1321 254 ***** 1322 371 ***** 1323 571 ***** 1324 578 ***** 1325 435 ***** 1326 237 ***** 1326 237 ***** 1328 182 ***** 1329 208 1330 213 1331 203 1331 203 1332 201 1334 195 1335 157 1336 179 Óvissa (=2s) f einstökum súlum f súluri	00000000000000000000000000000000000000
cpm: .529 Virkni á massaeiningu (h.v.):	virkni: .295681 Bq
Neðri mörk greiningar: cpm: .088	virkni: 4.934162E-02 Bq 1.486193 Bq/kg

Introduction

Got to know some excellent Nordic work on gamma spectrometry (including development of software) when starting my work after the Chernobyl accident.

Wrote my own software for (routine) <u>simple analysis</u> of gamma spectra in 1990 to understand the process better (still in use).

Challenges I tried to address:

- Make the software <u>simple to use</u>
- Check the input for <u>consistency</u>
- Try to <u>find errors</u>
- Have a <u>user interface</u> that helps the user to <u>spot if something</u> <u>could be suspicious</u>.

Introduction

Exercise spectrum, more than 200 peaks will be found with careful analysis.

 For dealing with the unexpected in emergency response (and teaching) a completely different tool is needed.

 The image to left is from Mika Nikkinens NKS-43 2001 report, The Use of Synthetic Spectra to Test the Preparedness to Evaluate and Analyze Complex Spectra

Emergency response – US guides and software

FEDERAL RADIOLOGICAL MONITORING AND ASSESSMENT CENTER FRMAC Gamma Spectroscopist **Knowledge Guide** RESPONSE TRIBAL READI STATE LOCAL ER FEDERA OCOGICAL MONITORING AND AS August 2019 FRMAC Gamma Spectroscopist Knowledge Guide

SAND2019-9768 R Unlimited Release

These guides are designed to be:

- easy to read
- yet tackle some of the challenges one can encounter in practice
- deal with the basics of the underlying theory.

The guides can thus also be used for teaching, giving an introduction to gamma spectrometry.

https://www.osti.gov/biblio/1763003-frmacgamma-spectroscopist-knowledge-guiderevision

<u>s_camera_ready.pdf</u>

PeakEasy – a handy and versatile tool

- <u>https://peakeasy.lanl.gov</u>
- Can read most types of spectrum files in common use, including those from handheld devices.
- No automatic identification of nuclides, but it provides the user with a lot of information to aid in determining the right nuclide.
- Lightweight (in terms of bytes)
- Has been in use for many years, but it is for U.S.
 Government Affiliates Only

InterSpec is a native or web application to assist in analyzing spectral nuclear radiation data, using a peak-based methodology.

Common uses include

- identifying nuclides present
- determining source **activity**
- shielding amounts
- **source age** or other nuclear reactions present.

InterSpec also provides a number of **<u>other tools</u>** useful for analyzing radiation data including

- 'spectral file format converting
- **dose rate** calculations
- interactive nuclide decay and reference information
- gamma cross section calculations
- and more.

InterSpec can open data files from most common spectral radiation detectors (e.g., most Nal, HPGe, LaBr, CLYC, Csl, etc. based systems) and assist in their analysis.

InterSpec – additional info

InterSpec is freely available to all and designed according to similar principles as PeakEasy.

It has a number of useful tools and it can read and write many common file formats

Activity/Shielding Fit Gamma XS Calc Dose Calc 1/r2 Calculator Activity Converter Flux Tool Nuclide Decay Info Detector Response Select Make Detector Response File Parameters Energy Range Count File Query Tool

TXT File CSV File PCF File 2006 N42 File 2012 N42 File CHN File Integer SPC File Float SPC File ASCII SPC File GR130 DAT File GR135v2 DAT File IAEA SPE File HTML File

InterSpec – available for different platforms

InterSpec is <u>lightweight</u> in bytes (PC version < 200 MB), does <u>not require to be installed</u> and is also offered for different platforms:

- Windows, Linux, macOS, iOS (and iPadOS), Android
- The source code is also available for own use.

PC format to the left and smartphone (iPhone) below

(what is the use of a smartphone without proper gammaspectrometric software?)

InterSpec: Example of tools

2

Close

Use in an exercise for students

- Lab exercise measuring a <u>neutron activated sample</u>
- Short lived radionuclides are thus possible
- By default, InterSpec assumes it does not need to identify nuclides with a H.L < 100 min (6000 s), but this can be changed
- Question to students: If there are short lived radionuclides in the sample, can we use their decay rate in addition to their spectral information to identify them?
- It would be nice to be able to use <u>list mode data acquisition</u> and store and time stamp each event.
 - Here the focus is however on what can be done with simple robust equipment and procedures that can be explained quickly to first responders and students.

🜂 InterSpec

Min. BR 0.00 🔶 Min. HL 6000 s

 $\nabla_{\mathbf{A}}$

П

Theory: Ratio of net peak areas subject to decay

$$\frac{N_2}{N_1} = \frac{e^{-\lambda\Delta t}(1 - e^{-\lambda t_2})}{1 - e^{-\lambda t_1}}$$

 Δt is the time difference between the beginning of measurement #1 and measurement #2 The decay rate λ is the only unknown and can be solved numerically from the equation

> In this case the equation solver in a HP48SX calculator (from 1990) was used, it should be easier with more modern devices incl. smartphones.

Results

Two gamma lines were examined in the exercise, one <u>fast decaying at 1039 keV</u> and another with a <u>slower decay</u> <u>rate at 1346 keV</u>. Results by gamma spectrometry was that these were Cu-66 and Cu-64. These results were to be <u>validated</u> by <u>comparison of the observed decay rate with the reference value</u> for these nuclides.

					Cu-66 1039 keV			Cu-64 1346 keV	
Δt	t (sec)	t (min)	t (h)		Ν	S		Ν	S
0	433	7.2	0.1		313	18		27	6
668	4506	75.1	1.3		127	12		217	15
668	76983	1283	21.4		132	15		2268	49
95% confidence interval									
Reference	value	Estimated	l		lower	upper			
5.12	min	5.46	min		4.8	6.0	minutes		
12.7	h	12.8	h		9.3	18.2	hours		
	Δt 0 668 668 668 Reference 5.12	Δt t (sec) 0 433 668 4506 668 76983 668 76983 668 76983 8 8 668 76983 8 8 8 8 8 8 8 8 9 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 8 9 8	Δt t (sec) t (min) 0 433 7.2 668 4506 75.1 668 76983 1283 668 76983 1283 668 76983 1283 668 76983 1283 668 76983 1283 668 76983 1283 668 76983 1283 668 76983 1283 668 76983 1283 668 76983 1283 668 76983 1283 668 76983 1283 668 76983 1283 668 76983 1283 668 76983 1283 7000000000000000000000000000000000000	Δt t (sec) t (min) t (h) 0 433 7.2 0.1 668 4506 75.1 1.3 668 76983 1283 21.4 668 76983 1283 21.4 668 76983 1283 21.4 668 76983 1283 21.4 668 76983 12.8 Reference value Estimated 5.12 min 5.46 min 12.7 h 12.8 h	Δt t (sec) t (min) t (h) 0 433 7.2 0.1 668 4506 75.1 1.3 668 76983 1283 21.4 668 76983 1283 21.4 668 76983 1283 21.4 668 76983 1283 21.4 668 76983 12.8 4 668 76983 12.8 4	Δt t (sec) t (min) t (h) N Δt t (sec) t (min) t (h) N Δt 433 7.2 0.1 313 Δt 4506 75.1 1.3 127 Δt 76983 1283 21.4 132 Δt 76983 1283 21.4 132 Δt 76983 1283 21.4 132 Δt 668 76983 1283 21.4 132 Δt 668 76983 1283 21.4 132 Δt 61.4 61.4 61.4 132 Δt 61.4 61.4 61.4 132 Δt 61.4 61.4 61.4 14.8 Δt Δt Δt 61.4 61.4 Δt Δt Δt 61.4 61.4 Δt Δt Δt 61.3 61.4	Δt t (sec) t (min) t (h) N s ① 433 7.2 0.1 313 18 ⑥ 4506 75.1 1.3 127 12 ⑥ 76983 1283 21.4 132 15 ⑥ 76983 1283 21.4 132 15 ⑧ 1 1 1 132 15 Ø 1 1 1 132 15 Ø 1	Δtt (sec)t (min)t (h)Ns04337.20.131318668450675.11.31271266876983128321.41321566876983128321.41321566876983128321.41616066876983128321.41613266876983128321.41616067983128321.41616016068976983128360160160Reference valueEstimated1614.86.0minutes5.12min5.46 min4.86.018.212.7h12.8 ·9.318.2hours	Cu-66 1 US + Cu-66 1∆tt (sec)t (min)t (h)NSN△4337.2.0.131318.0.27668450675.1.1.3.12712.217668769831283.21.4.1.3.1.3.1.3.1.3668769831283.21.4.1.3<

 If <u>both measurements begin at the same time</u> (so the longer is just a continuation of the shorter one without the counting having been stopped):

if
$$\Delta t = 0$$
 then $e^{-\lambda \Delta t} = 1$ and

$$\frac{N_2}{N_1} = \frac{1 - e^{-\lambda t_2}}{1 - e^{-\lambda t_1}}$$

A simple procedure to obtain the half-life of a radionuclide from the ratio of measured peak areas in a gamma spectrum

If the <u>second measurement starts the count again from zero</u> and is of the <u>same length as the first one</u>, the ratio of the net peak areas has a very simple form and it is easy to solve the equation to obtain the decay rate and half-life directly:

If
$$t_1 = t_2$$

$$\frac{N_2}{N_1} = e^{-\lambda \Delta t}$$

It would be nice to hear from anyone else who has been using *InterSpec* or doing *similar experiments* as described here, in the chat or e-mail: <u>sep@hi.is</u>

Thank you!