

Gamma-ray spectrometry basics #2: Gamma spectrum analysis and activity calculations

Alexander Mauring NKS GammaSkill Training Day, 26.09.2023

## What this lecture is basically about...

How do we go from this...



... to this?

| Nuclide | Activity<br>[Bq/kg] |
|---------|---------------------|
| K-40    | 512 ± 29            |
| Co-60   | 63 ± 6              |
| Cs-134  | $104 \pm 7$         |
| Cs-137  | 338 ± 11            |
| Pb-210  | $273 \pm 19$        |
| Am-241  | < 12                |

#### Agenda

- **O1** A closer look at full energy peaks
  - **02** Energy and FWHM calibration
  - **03** The spectrum analysis process
  - 04 Activity (and uncertainty) calculations
  - 05 Use of software and results reporting

### The gamma spectrum

• The location (energy) of full energy peaks tells us which nuclide(s) are in the spectrum



## The gamma spectrum

• The size (area) of the peaks tells us something about the nuclide activity



#### The gamma spectrum

• We can also see many other effects in the spectrum





# Shape of full energy peaks in the spectrum

• The peak shape is typically "Gaussian"



FWHM = "Full Width at Half Maximum"



### Linear vs. logarithmic y-axis for the spectrum



#### 9 **IFE**

## A closer look at full energy peaks in the spectrum



Energy (keV)

#### Agenda

- 01 A closer look at full energy peaks
- 02 Energy and FWHM calibration
  - **03** The spectrum analysis process
  - 04 Activity (and uncertainty) calculations
  - **05** Use of software and results reporting

• The MCA sorts each event into an appropriate channel in the spectrum



• Energy calibration relates the channel number to the photon energy. It is done by measuring known gamma sources at several energies



- Energy calibration relates the channel number to the photon energy. It is done by measuring known gamma sources at several energies
- The curve can then be used to predict the energy of a peak in any channel



• The "straight line hypothesis" also holds true when using many peaks:



Source: Gilmore, 2008. "Practical gamma-ray spectrometry"

# Peak width (FWHM) calibration

• Plot of observed FWHM values as a function of energy from measurement of one or several known sources, fitted with a mathematical function:



**Gilmore**  FWHM  $= \sqrt{a \cdot E^2 + b \cdot E + c}$ **Debertin & Helmer** 

 $FWHM = \sqrt{a \cdot E + b}$ 

Genie2000 $FWHM = \sqrt{a \cdot E} + b$ 

#### Agenda

- 01 A closer look at full energy peaks
- **02** Energy and FWHM calibration
- **03** The spectrum analysis process
  - 04 Activity (and uncertainty) calculations
  - 05 Use of software and results reporting

### The spectrum analysis process

Computer with gamma spectrum acquisition and analysis software





## Searching for peaks: Visual method



# Searching for peaks: "Second difference method"

• Method was first proposed by Mariscotti in 1967, now used for finding peaks in all major spectrum analysis software



Theoretical basis of method

The method in practice (Derivatives  $\rightarrow$  differences)



Figure source: Gilmore, 2008. "Practical gamma-ray spectrometry"

## Peak area determination by two different methods

- Method one: "Simple" ROI based method
- Method two: Fitting a Gaussian function





Because count numbers are Poisson distributed

## Peak area determination by Gaussian fitting

• If several peaks are located close together, Gaussian fitting is often the only way to determine their respective areas. But be careful to not "over-fit" something!



#### Detector background and need for correction



# Peaked background subtraction

• Subtracting a background contribution to the FEP area, peak by peak:

Input to the activity 
$$\leftarrow \underline{n_{\mathrm{N,E}}} = n_E - n_{0,E} \cdot \frac{t_g}{t_0}$$
 equation

| $n_{\mathrm{N},E}$ | net peak area (background corrected)           |
|--------------------|------------------------------------------------|
| $n_E$              | peak area (not background corrected)           |
| $n_{0,E}$          | area of peak in background spectrum            |
| $t_{g}$            | "live time" of sample spectrum measurement     |
| $t_0$              | "live time" of background spectrum measurement |

In case of no background peak ( $n_{0,E} = 0$ ):  $n_{N,E} = n_E$ 

# Measurement live time, $t_g$



FF

- Measured by the internal clock of the MCA
- Corrected for "dead time" (when system still busy with previous signal and cannot process a new one)
- Reported directly in the acquisition software:

| Acq. Start: 10/14/2018 | 8:47:03 AM     | Elapsed   | Preset |
|------------------------|----------------|-----------|--------|
| Dead Time: 2.61%       | Live (secs.):  | 86400.000 | 0      |
| Comp. Preset Region:   | Real (secs.):  | 88715.380 | 0      |
| 0 - 0 (channels)       | Total (cnts.): | 0.00      | 0      |

# Going from peak area to activity: Key principle

• The area of a full energy peak tells us about the activity concentration of a nuclide of interest:



• However, to calculate a, we must consider several other factors as well...

#### Agenda

- 01 A closer look at full energy peaks
- **02** Energy and FWHM calibration
- **03** The spectrum analysis process
- **04** Activity (and uncertainty) calculations
  - 05 Use of software and results reporting

# The full activity equation

• Typical activity equation in gamma-ray spectrometry:

$$a = \frac{n_{\mathrm{N},E}/t_g}{P_E \cdot \varepsilon_E \cdot q \cdot f_E}$$

- $n_{\mathrm{N},E}$  net peak area of the peak of interest
- $t_g$  measurement live time of the spectrum
- $P_E$  emission probability of gamma line of interest
- $\varepsilon_E$  full energy peak efficiency at energy E
- q sample quantity (for example kg, l, m<sup>3</sup>, ...)
- $f_E$  all other necessary correction factors (more details later)

# Gamma emission probability

$$a = \frac{n_{\mathrm{N},E}/t_g}{\boldsymbol{P}_{\boldsymbol{E}} \cdot \boldsymbol{\varepsilon}_E \cdot \boldsymbol{q} \cdot \boldsymbol{f}_E}$$

#### A decay may not always result in the emission of a specific gamma-ray photon.

- Also known as "Intensity", "Abundance", "Yield", etc.
- Nuclear data quantity stored in the nuclide library. <u>Example:</u>

|              |               | Type Origin <sup>*</sup> |        | Levels             |                              | Possible coincidence with (keV) / |  |
|--------------|---------------|--------------------------|--------|--------------------|------------------------------|-----------------------------------|--|
| Energy (kev) | Intensity (%) |                          |        | Start <sup>*</sup> | $\operatorname{End}^{\star}$ | Possible sum of (levels)          |  |
| 661.657 (3)  | 84.99 (20)    | γ                        | Ba-137 | 2                  | 0                            |                                   |  |

• What does this tell us?

The emission probability of the 661.657 keV gamma line of Cs-137 is **0.8499 ± 0.0020** - **OR -**

There's around 85 % chance that the decay of Cs-137 will result in the emission of a 661.657 keV gamma-ray photon.

# Full energy peak (FEP) efficiency

$$a = \frac{n_{\mathrm{N},E}/t_g}{P_E \cdot \boldsymbol{\varepsilon}_{\boldsymbol{E}} \cdot \boldsymbol{q} \cdot \boldsymbol{f}_E}$$

Only a certain fraction of gamma-ray photons emitted by the sample will give a count in the corresponding full energy peak in the gamma spectrum.



\* At the energy of interest (E)

#### IFE

5.27 Yrs

$$a = \frac{n_{\mathrm{N},E}/t_g}{P_E \cdot \varepsilon_E \cdot \mathbf{q} \cdot f_E}$$

Needed to calculate the activity concentration of radionuclides in a sample material.

- We distinguish between the total activity of a source, A, with units [Bq]:
- ... and the activity concentration, a, of a sample material with units [Bq/quantity]:



Sample quantity

[Bq/kg]







## **Correction factors**



*Correcting the calculated activity for various effects.* 

•  $f_E$  actually consists of three different factors which are multiplied together:

$$f_E = f_d \cdot f_{\text{att,}E} \cdot f_{\text{tcs,}E}$$

Where:

 $f_d$ is the correction factor for radioactive decay $f_{att,E}$ is the correction for sample self-attenuation (geometry) $f_{tcs,E}$ is the correction for true coincidence summing

# Radioactive decay correction, $f_d$

- Radioactive decay is a random process.
- We **cannot** predict exactly <u>when</u> a radioactive nucleus will decay, but we **can** say something about the general behavior of many radioactive nuclei over time.



# Self-attenuation (geometry) correction, $f_{\text{att},E}$

• Corrects for differences in FEP efficiency between the **calibration standard** and the **sample of interest**, caused by differences in self-attenuation and geometries.



# True coincidence summing correction, $f_{tcs,E}$



- Two or more photons from the same radionuclide are emitted in **cascade** (one directly after the other) and interact in the detector "simultaneously"
- The time between the two gamma emissions is much shorter than the resolving time of the detector, and they are therefore registered as one event.
- The individual counts at  $E_1$  and  $E_2$  are lost and instead a count is gained at  $(E_1 + E_2)$  Correction necessary!

### Putting it all together...



## Calculating measurement uncertainties

A measurement result is not complete without a statement of its uncertainty!

$$a = \frac{n_{\mathrm{N},E}/t_g}{P_E \cdot \varepsilon_E \cdot q \cdot f_d \cdot f_{\mathrm{att},E} \cdot f_{\mathrm{tcs},E}}$$

For this model equation, the uncertainty can be calculated according to the Guide to Expression of Uncertainty in Measurement (GUM) uncertainty framework from simple quadratic propagation:

$$u_c(a) = \sqrt{\left(\frac{u(n_{\mathrm{N},E})}{n_{\mathrm{N},E}}\right)^2 + \left(\frac{u(P_E)}{P_E}\right)^2 + \left(\frac{u(\varepsilon_E)}{\varepsilon_E}\right)^2 + \left(\frac{u(q)}{q}\right)^2 + \left(\frac{u(f_d)}{f_d}\right)^2 + \left(\frac{u(f_{\mathrm{att},E})}{f_{\mathrm{att},E}}\right)^2 + \left(\frac{u(f_{\mathrm{tcs},E})}{f_{\mathrm{tcs},E}}\right)^2}{\frac{1}{2}}$$

(assuming uncertainty of  $t_q$  is negligible)

# Typical magnitude of uncertainty components

|                             |                      | Typical<br>uncertainty | Typical<br>uncertainty |
|-----------------------------|----------------------|------------------------|------------------------|
| Input quantity              | Symbol               | range (%)              | value (%)              |
| Net peak area               | $n_{{ m net},E}$     | 0.1-20                 | 2                      |
| Counting time               | $t_g$                | 0-2                    | -                      |
| Emission probability        | $P_E$                | 0.01-5                 | < 0.5                  |
| FEP efficiency              | $\mathcal{E}_E$      | 1-5                    | 3                      |
| Sample quantity             | <i>m</i> or <i>V</i> | 0.01-5                 | < 0.5                  |
| Decay correction            | $f_d$                | 0.01-1                 | < 0.2                  |
| Self-attenuation correction | $f_{{\rm att},E}$    | 0.1-10                 | 2                      |
| TCS correction              | $f_{cs,E}$           | 1-5                    | 2                      |
| Other effects               | -                    | 0.01-1                 | < 0.5                  |
| Activity concentration      | a                    | 3-30                   | 5                      |

#### Agenda

- 01 A closer look at full energy peaks
- **02** Energy and FWHM calibration
- **03** The spectrum analysis process
- 04 Activity (and uncertainty) calculations
- 05 Use of software and results reporting

# Software for spectrum acquisition and/or analysis

Computer with gamma spectrum acquisition and analysis software





# Some typical analysis software features

- ✓ Spectrum acquisition (MCA emulation)
- ✓ Storage and management of different types of files
- ✓ Peak search and peak area determination
- Energy, peak shape, efficiency calibration
- ✓ User configurable radionuclide libraries
- ✓ Radionuclide identification
- ✓ Calculation of activity, uncertainty and MDA
- ✓ Results reporting

Tip: Know what your software can (and cannot) do, and how to do it!





# Nuclide libraries – at the heart of the analysis

- The nuclide library contains all nuclear data parameters used by the software to carry out the analysis (nuclide identification and activity calculation)
  - Radionuclide half-lives
  - Gamma-ray energies
  - Emission probabilities
  - Related uncertainties

...

| Nuclide Library Editor: TEL-LIB-194-1.NLB |                     |                                |                       |                                 |  |
|-------------------------------------------|---------------------|--------------------------------|-----------------------|---------------------------------|--|
| <u>File</u> <u>Search</u> Opti            | ons <u>H</u> elp    |                                |                       |                                 |  |
| Nuclide<br>Name: BE-7<br>Full Name:       | ,<br>Half-L<br>Unce | .ife: 53.22<br>rtainty: ± 0.06 | ОҮ<br>ОН              | ер<br>см                        |  |
| Type: activ                               | vation 💌            |                                | ~ ~ ~                 | Liear                           |  |
| Energy Lines<br>Energy:<br>Uncertainty: ± | keV                 | Abundance:<br>Uncertainty: ±   | %                     | Key Line<br>No Wt Mean<br>Clear |  |
| Name                                      | Туре                | Half Life                      | Energy , keV          | Abundance - %                   |  |
| BE-7                                      | activation          | 53.220D                        |                       | *                               |  |
| NA-22                                     |                     | 2.603¥                         | * 477.60<br>* 1274.53 | 10.4400<br>99.9400              |  |
| NA-24                                     | activation          | 14.958H                        | * 1368.63<br>2754.04  | 99.9934<br>99.8620              |  |
| K-40                                      | natural             | 1.250e+009Y                    |                       | Ŧ                               |  |
| Add <u>N</u> uclide                       | Add Line            | Change                         | Delete                | More                            |  |

Screenshot of Genie2000 Nuclide Library Editor

# Nuclide libraries – recommended data sources

- Nuclide data is used as direct inputs to the activity calculation. So, it's important to use the correct data!
- <u>Some recommended data sources:</u>
   Decay Data Evaluation Project (DDEP) / Laraweb: <u>http://www.nucleide.org/DDEP.htm</u> <u>http://www.nucleide.org/Laraweb/index.php</u>
  - IAEA Nuclear Data Services: <u>https://www-nds.iaea.org/</u>
- <u>Tip:</u> Check your nuclide library to be sure that it contains the radionuclides you are interested in and that they have the latest recommended data.



# **Reporting results**

• Results should be reported clearly and unambiguously

#### • Example

The activity concentration of Cs-137 in sample #111 is

 $345 \pm 12 \text{ Bq/kg} \ (k = 1)$  on reference date 2023-09-26



#### Some general tips:

- Round all values appropriately
- Include the measurement unit
- Don't forget the reference date

# Final words: Trusting your software...

- The spectrum analysis process involves several steps before nuclide activities can be calculated from full energy peaks in the spectrum. Analysis software will carry out most of the steps automatically, given the correct input.
- But the software cannot think for itself. It's very important to have a qualified analyst to evaluate the results!
- Always remember:
   You are smarter than the software ③



#### Thank you for the attention!

Alexander.Mauring@ife.no