Laboratoire National Henri Becquerel

LNE-LNHB

## Efficiency calibration

Marie-Christine Lépy Laboratoire National Henri Becquerel CEA Saclay, F-91191 Gif-sur-Yvette cedex, France E-mail: marie-christine.lepy@cea.fr

NKS GammaUser 2014 – Helsinki – 6-8 October 2014

## Efficiency calibration

Full energy peak efficiency

 Definition
 Experimental calibration

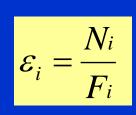
Monte Carlo simulation

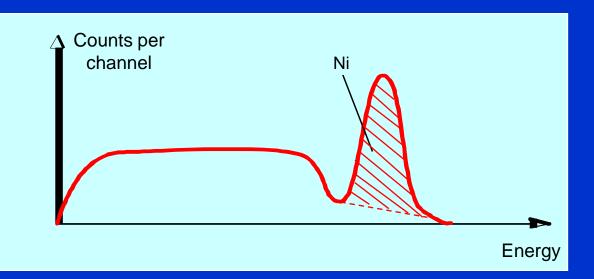
Uncertainties

### FULL ENERGY PEAK EFFICIENCY

### Full-Energy Peak Efficiency (FEPE): $\varepsilon(E)$ ( $\varepsilon_i$ )

Ratio of the number of counts in the full-energy peak corresponding to energy  $E_i(N_i)$ , by the number of photons with energy *E* emited by the source (*Fi*)

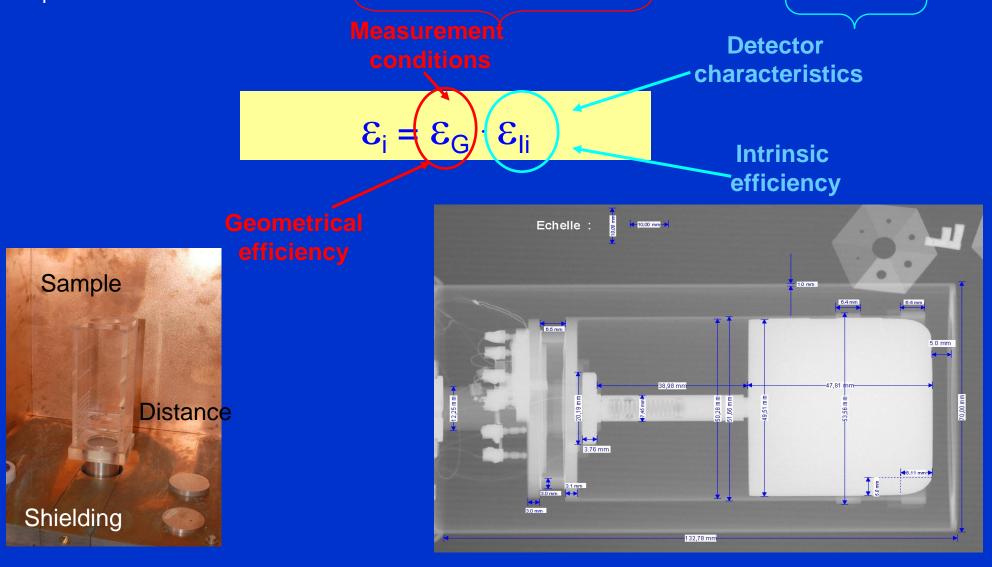




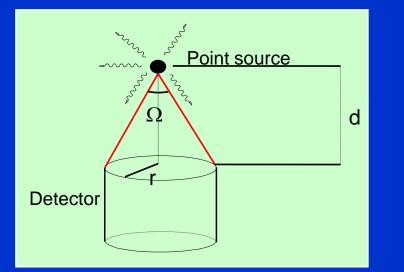
 $\mathcal{E}_i$  depends on the source-detector geometry and on the energy

### Full-energy Peak Efficiency (FEPE): $\mathcal{E}_i$

### $\varepsilon_{p}(E)$ depends on the geometrical conditions and on the energy



## **Geometrical efficiency**



 $\Omega$  = solid angle between source and detector (*sr*)

For a point source :

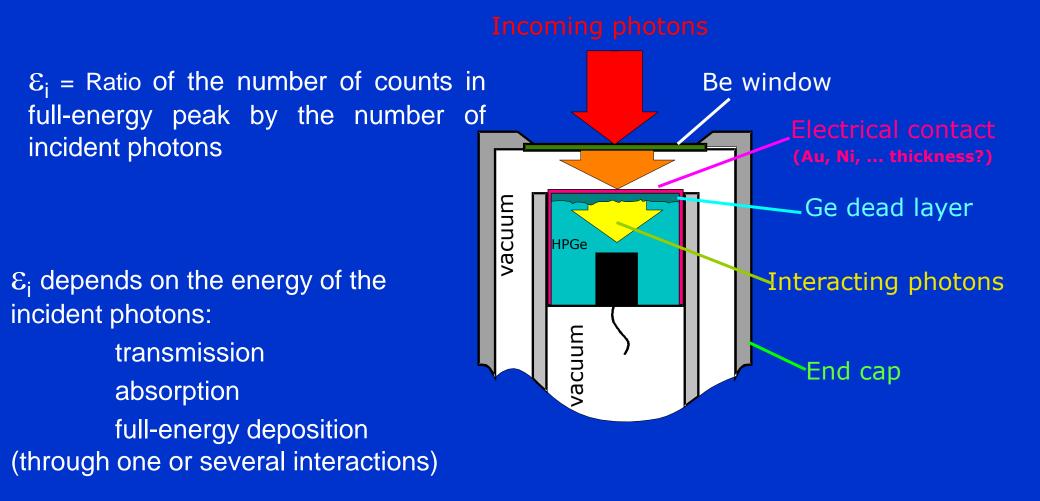
$$\Omega = 2\pi \left(1 - \frac{d}{\sqrt{d^2 + r^2}}\right)$$

Ratio of the number of photons emitted towards the detector by the number of photons emited by the source

$$\mathcal{E}_{G} = \frac{\Omega}{4\pi}$$

 $\epsilon_{G}$  depends only on the source-detector geometry

## Intrinsic efficiency



Difficulty: exact composition and relative positions poorly known

### Calculation of the detector FEP efficiency

Transmission probability through material i with thickness  $x_i$ : (Beer-Lambert law) :

Thus

Interaction probability in the same material:  $\square$   $P_{I}(E, x_{i}) = 1 - P_{T}(E, x_{i})$ 

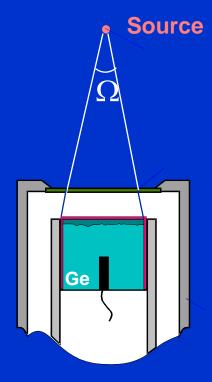
To result in a count in the FEP peak:

The photon must :

- be emitted in the  $\Omega$  solid angle,

- cross the screens (air,n window, dead layer,...) without being absorbed,

- and loose all its energy (full-energy absorption) in the detector active volume.



 $P_{T}(E, x_{i}) = exp(-\mu_{i}(E) \cdot x_{i})$ 

### Calculation of the detector efficiency

Interaction in the  
through screens
$$R^{P}(E) = \int_{\Omega} \prod_{i} \left( \exp\left(-\mu_{i}(E) \cdot x_{i}\right) \right) \cdot \left(1 - \exp\left(-\mu_{d}(E) \cdot x_{d}\right) \cdot P_{P}(E) \cdot d\Omega\right)$$
Probability of total

Probability of total absorption in the detector

For the low-energy range:

(photoelectric effect dominant at low energy)

For higher energies:

Total absorption is due to succesive effects : multiple scattering

 $P_p(E) \approx \tau_d(E)/\mu_d(E)$ 

Thus the calcul is not possible

### Calculation of the detector efficiency

Many difficulties for an accurate calculation

- Exact knowledge of the detector parameters: materials (composition) geometry (thickness, position ...)

- Data used in the calculation : Attenuation coefficients Material density

- Semi-conductor effects: parameters and physical interaction :

**Electrical field** 

Electrodes

NKS GammaUser 2014



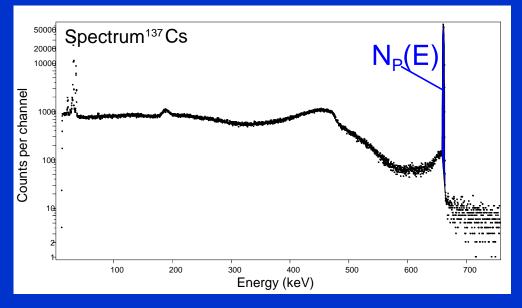
Radiography of a HPGe detector: Rounded crystal, axially shifted, tilted

### **Experimental FEP efficiency calibration**

$$\varepsilon_i = \frac{N_i}{F_i} \qquad \qquad \varepsilon_i = \frac{N_i}{A \cdot I_i}$$

This is performed using standard radionuclides with standardized activity A (Bq) with photon emission intensities,  $I_i$  well known

 $N_i$ : peak net area



 $\mathcal{E}_i$  Full-energy peak (FEP) efficiency depends on the energy and on the source-detector geometrical arrrangement

### Associated standard uncertainty

Efficiency calibration

$$\varepsilon_i = \frac{N_i}{A \cdot I_i}$$

$$\left(\frac{\Delta \varepsilon_i}{\varepsilon_i}\right)^2 = \left(\frac{\Delta N_i}{N_i}\right)^2 + \left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta I_i}{I_i}\right)^2$$

$$\frac{\Delta N_i}{N_i} = \frac{\sqrt{N_i}}{N_i} = \frac{1}{\sqrt{N_i}} \qquad \qquad \frac{\Delta A}{A} = 5 \cdot 10^{-3} \qquad \qquad \frac{\Delta I_i}{I_i} = 1 \cdot 10^{-3}$$

Influence of the peak area :

if N = 10<sup>4</sup>  $\Delta$ N/N = 10<sup>-2</sup> ->  $\Delta$  $\epsilon/\epsilon$  = 1.1 10<sup>-2</sup>

if N = 10<sup>5</sup>  $\Delta$ N/N = 3.1 10<sup>-3</sup> ->  $\Delta$  $\epsilon/\epsilon$  = 6 10<sup>-3</sup>

## **FEP** efficiency calibration

To get an efficiency values at any energy : energy calibration over the whole energy range

1. Use different radionuclides to get energies regularly spaced over the range of interest

Single gamma-ray emitters : <sup>51</sup>Cr (320 keV), <sup>137</sup>Cs (662 keV)

<sup>54</sup>Mn (834 keV) : one efficiency value per one measurement

Multigamma emitters : <sup>60</sup>Co, <sup>133</sup>Ba, <sup>152</sup>Eu, <sup>56</sup>Co : several efficiencies values per one measurement , but coincidence summing effects !

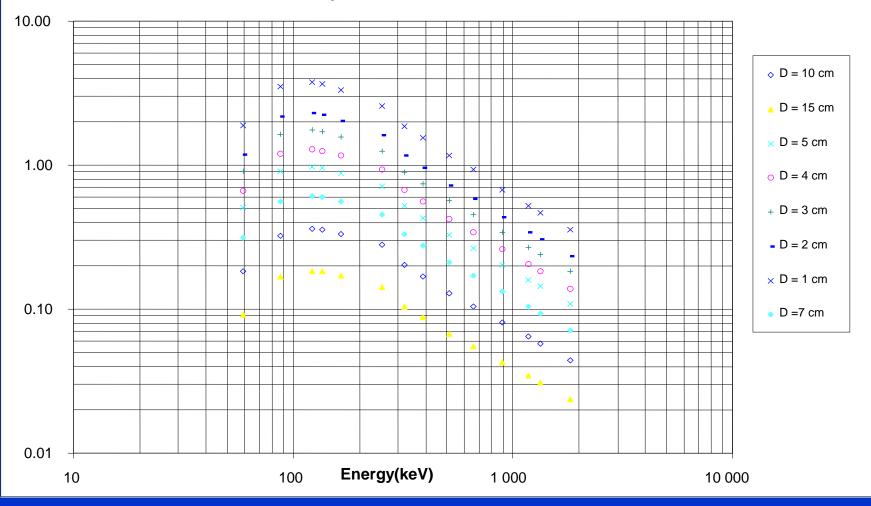
For each energy, discrete values of the FEP efficiency  $\varepsilon(E_1)$ ,  $\varepsilon(E_2)$ , ...  $\varepsilon(E_n)$ 

#### 2. Computation of the efficiency for

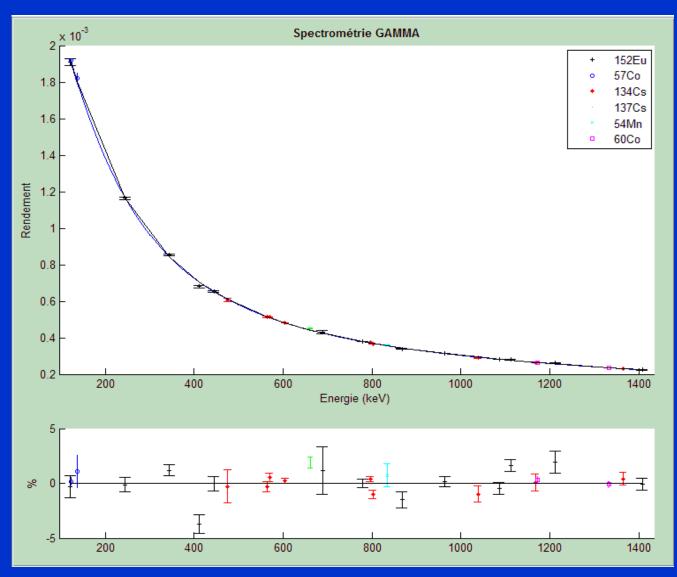
- 1. Local interpolation
- 2. Fitting a mathematical function to the experimental values

## FEP efficiency calibration

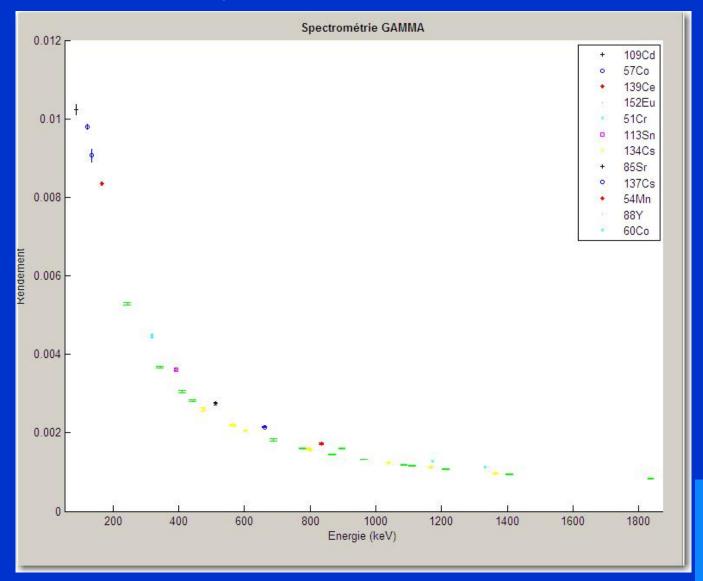
Efficiency calibration for different source-to-detector distances



### Efficiency calibration at 25 cm



### Efficiency calibration at 10 cm





NKS GammaUser 2014

Multigamma emitters -> Coincidence summing effets

## FEP Efficiency calibration : remarks

Efficiency calibration for reference geometry

 For point source : relative uncertainty 1-2 %

 Corrective factors needed if different measurement geometry -> larger uncertainties

# MONTE CARLO SIMULATION

1

.....

## Principle



- Follow the path of a particle (photon) from its emission point
- Looking at each possible event (probability distribution)
- Record the amount of energy deposited in the detector -> definition of efficiency
- Repeat many times  $(10^6 10^7)$

## Main steps

- **Simulation of the source :** Simulation of the emission point, of the direction of propagation, of the energy.
- Simulation of photon propagation: Distance to the next interaction for photons - Photons of energy E and linear attenuation coefficient µ
- Simulation of the interactions
- Photon interactions of interest are: photoelectric (µPh), Compton (µCo), production of a pair electron-positron (µPair).
- Ref : Sima, O. 2012. Efficiency Calculation of Gamma Detectors by Monte Carlo Methods. Encyclopedia of Analytical Chemistry.

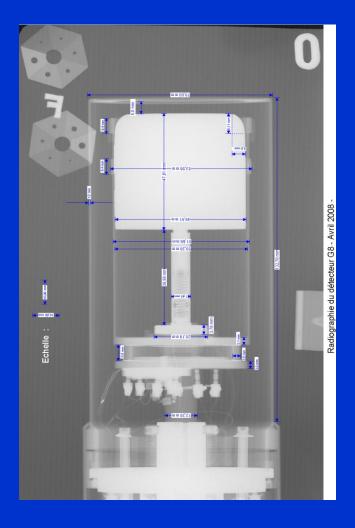
## Monte Carlo codes

- Generalist : GEANT, PENELOPE, MCNP, etc.
- (multipurpose- must be prepared)

 Dedicated: GESPECOR (Univ. Bucharest), DETEFF (CRPH Cuba), other ?

## Monte Carlo simulation

- Difficulties: bad knowledge of the detector internal parameters
- Accurate description is time-consuming:
  - Radiography (external dimensions)
  - Collimated beam (hole dead layer)
  - Window to crystal distance (source at different distance)
  - Comparison with some experimental values
    - Different energies
    - Different geometries



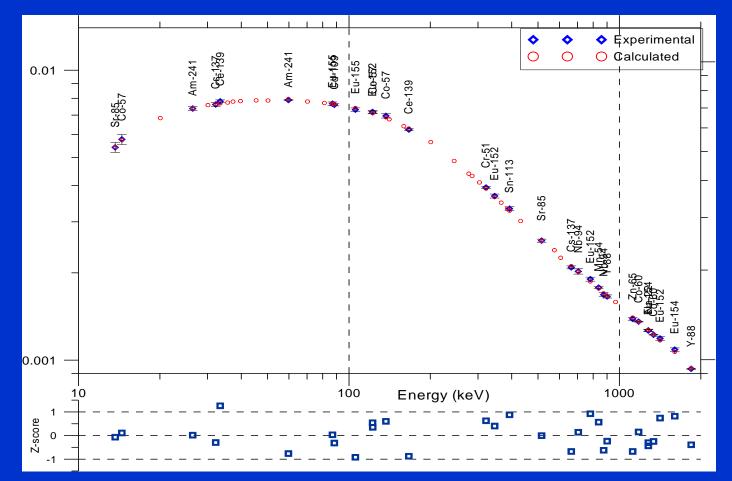
X-ray tube -> Geometrical dimensions Cristal shape (rounding)



<sup>60</sup>Co source -> Hole dimensions

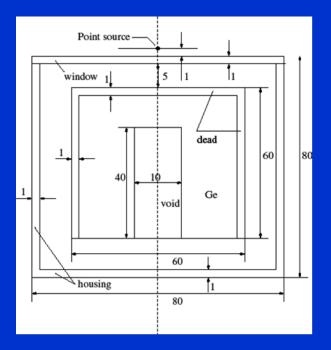
## Comparison with experimental data

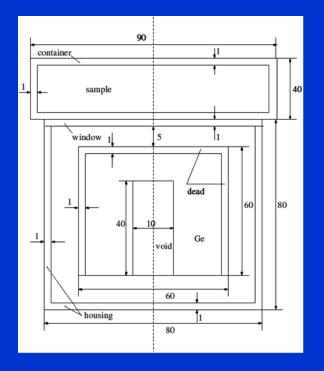
Extended-range coaxial HPGe with carbon-epoxy window (61 x 61 mm) Point sources at 16 cm from the detector window



Picture from V. Peyres - CIEMAT

## Comparison of codes (CRP action)





- Well-defined geometry (P-and N-type detectors)
- Point source Volume (water soil- filter)
- Ref: T. Vidmar et al., An intercomparison of Monte Carlo codes used in gamma-ray spectrometry" Applied Radiation and Isotopes, Vol 66, Issue 6-7, p 764-768, 2008.

## Monte Carlo simulation

- For non specialized codes:
  - « User effect «
  - Importance of the cut-off energy
  - Importance of the bin size to reproduce the spectrum
- Can provide
  - FEP efficiency
  - Total efficiency (very dependent on the environment)
  - Coincidence summing corrections
  - Absolute calculation should be compared with accurate experimental data
- Strong interest for efficiency transfer
   calculation