TVC

MEASURING IODINE FROM STACK FILTERS

20.9.2017

Hovi Petri

TEOLLISUUDEN VOIMA OYJ

- Finnish energy company with nuclear power plants in Olkiluoto
- 2 * 880 MW BWR power plants in operation
- 1 * 1600 MW EPR under construction
 - After completion TVO produces one third of Finnish electricity

CHANGES IN MEASUREMENT SYSTEMS WERE MADE DURING WINTER 2015 AND 2016

- Old system
 - 2 parallel lines with noble gas pulse counter and aerosol/iodine filter for laboratory analysis
- Current system
 - One line with online noble gas monitor and aerosol/iodine filter for laboratory analysis (No modification to sampling point)
 - One line with online noble gas monitor, α/β particulate monitor and iodine monitor and aerosol/iodine filter for laboratory analysis (new sampling point)

OLD SYSTEM

TVO

NEW SYSTEM

AEROSOL RESULTS FROM PARALLEL LINES DIDN'T MATCH

🚰 Valm. prosessir	näyte, Näytä	PJHO TVO		Valm. prosessinäyte, Näytä PJHO TVO								
Arkisto Kenttä Raportit Ohje						Arkisto Kenttä Raportit Ohje						
] # <mark>#</mark> ■ # ®, K ◀ ◀ ▶ ▶ ⊁ # 1 º ™ ₩ # & # @ @ □							₩ ₽ 8		{ 	N A 🖸 🗠 🕫	• 🖾 🐙 🍣 é	
Näytepiste: 1.553C11 Poistokaasupiippu, aerosoli							Näytepiste:	1.553C2	21	Poistokaasup	iippu, aeroso	
Näytetyyppi: X-RK-PÄÄ-Aero Aerosolipäästöt							Näytetyyppi:	X-RK-P	ÄÄ-Aero	Aerosolipääs	töt	
Näytepvm: 010616 05:09							Näytepvm:	010616	04:58			
Näytenro:	2016	4876 1	Asiakas:	OL1	Kirjau		Näytenro:	2016	4878 1	Asiakas:	OL1	
Kuvaus Näytteestä/Näytteenc Näytteenottaj HKLF Kirjaa							Kuvaus Näytteestä/Näytteenc Näytteenottaj HKLF					
Hyv ID: AHA Dokumentti							Hyv ID:	AHA ⁻	Dokument	ti		
Hyl. Pvm	□ Hyl. Pvm 020616 klo 07:22 Nä							090117	klo 08:10			
Analyysi Anal.tulos Yksikkö Mitt.tulos Mitt.yks Mitt.epäv.							Analyysi	Anal.tulos	: Yksikkö	Mitt.tulos	Mitt.yks	
Kerävsaika	154.3E3	s					Kerävsaika	154.0E3	s			
F-näyte	85	m ³	33	l/min			F-näyte	42	m ³	16,5	l/min	
F-piippu	17.35E6	m ³	112,44	m3/s			F-piippu	17.32E6	m ³	112.45	m3/s	
Gamma	895E3	Ba	1.0770	Ba/n			Gamma	0.0000	Bq		Bq/n	
MN-54	26123	Ba	1.2772	Bq/n Ba/n	12.9					_		
CO-50 CO-60	130E3	Ba	2 3393999	Ba/n	21.3					_		
00 00		Dq	2.333333333	Dq/II	0.000000					_		
					_					_		
										_		
										_		
										_		
										_		
					_							

IODINE RESULTS WEREN'T PERFECT EITHER

- We were able to get aerosol collection to work better, but it still isn't good. It will require sampling line modification
- Iodine collection efficiency didn't remarkably get better after opening control valve and closing delay line
- Maybe something is wrong with calibrations

FILTERS FROM PARALLEL LINES

GRAIN SIZE IS DIFFERENT

TIME FOR SOME NEW CALIBRATION SOURCES

C12 calibration sources were made for 0, 2, 5, 10, 15, 25 and 44 mm penetration depth

C22 calibration sources were made for 0, 2, 5, 10, 15 and 20 mm penetration depth

RESULTS OF CALIBRATION MEASUREMENTS

- Filters were spiked with E&Z mixed nuclide gamma standard solution
- Filters were measured face side down and then flipped over and measured again three times.
- Sn-113 392 keV peak was used to determine face/flip ratio. It was chosen because it's energy line is relatively close to I-131.
- This was done for two different detectors. Both detectors have calibration for every penetration depth. Ratio is determined when there is significant activity in the filter and calibration is chosen accordingly.

THE DIFFERENCE BETWEEN CALIBRATIONS

For C12 filter 10 mm calibration was used and for C22 filter 2 mm calibration was used

WHAT'S STILL LEFT TO BE DONE

- Sampling line need to be modified for better aerosol collection
- We're looking into changing C12 filter holders to similar with C22 filter so both sampling lines would have same filters
- Preparing and measuring takes long time, could this be done with LabSOCS. We will be changing to Canberra later this year.

Activated charcoal measurement is applied from D.M. Montgomery's paper, "Calibrating Germanium Detectors for Assaying Radio-iodine in Charcoal Cartridges", Radioact. Radiochem, 1(2),4, (1990)

"Zero" penetration depth filter is made according to ANSI N42.14-1999. It's supposed to be pseudo-uniformly deposited source with no significant migration of the activity.

