DE LA RECHERCHE À L'INDUSTRIE

INTRODUCTION ABOUT METROLOGY AND LNHB

NKS GammaUser 2014 Helsinki 6-8 October 2014

Marie-Christine Lépy Laboratoire National Henri Becquerel CEA Saclay – F-91191 GIF-SUR-YVETTE Cedex France E-mail: marie-christine.lepy@cea.fr

www.cea.fr

THE LABORATOIRE NATIONAL HENRI BECQUEREL (LNHB)

The Laboratoire National Henri Becquerel (LNHB) is:

- Laboratory of the French alternative energies and Atomic Energy Commission (CEA)
- Designated institute of the French metrology institute : LNE (Laboratoire National de métrologie et d'Essais)
- 2 buildings located in the Saclay CEA Center (30 km south Paris)

In charge of radioactivity standards (Bq, Gy) Permanent staff: 53

3 laboratories

Activity (Bq) (24) Nuclear decay data (4)

Dosimetry (Gy) (22)

What is metrology ?

Wikipedia: **Metrology** is the science of measurement. Metrology includes all theoretical and practical aspects of measurement.

The word comes from greek

"μέτρον" (*metron*), "measure"
"λόγος" (*logos*), "speech, oration, discourse, quote, study, calculation, reason".

International vocabulary of metrology – Basic and general concepts and associated terms (VIM) 3rd edition (JCGM 200:2012) Metrology: Science of **measurement** and its application

NOTE : Metrology includes all theoretical and practical aspects of measurement, whatever the **measurement uncertainty** and field of application.

A FEW WORDS ABOUT METROLOGY

Some historical measurement units around the world

A FEW WORDS ABOUT METROLOGY

The **cubit** *(lat. cubitus)* is a unit of lenght used several thousands of years.

One name but different lengths ...

Royal	Egypt	52 to 54 cm
Natural (small)	Egypt	45 cm
Roman	Rome	44.45 cm
Cyrenaïca	Greece	46.31 cm
Medium	Greece	47.42 cm
Black	Saudi	64.9 cm
Mesopotamian	Mesopotamia	53.34 cm
Hashimi	Persia	54.05 cm
Jude	Israël	42.81 to 44.45 cm
Babylonian	Babylon	49.61 cm

Nippur cubit, graduated specimen (3rd millennium B.C.) (Archeological Museum of Istanbul (Turkey).

Cubit rule Egyptian NK from Liverpool museum

A FEW WORDS ABOUT METROLOGY

Different units depending on the countries, on the professional community, etc...

One cubit

= 24 fingers = six palms = $1\frac{1}{2}$ foot

DE LA RECHERCHE À L'INDUSTRI

A REVOLUTIONARY IDEA...

Creation of the **decimal metric system** at the time of the French Revolution

Deposition of two platinum **standard**s representing the metre and the kilogram, on 22 June 1799, in Paris July 4, 1837 : Law \rightarrow Decimal system in France

First step in the development of the present International System of Units.

Development to facilitate trade

Later : Time reference : linked to railways

INTERNATIONAL ORGANIZATION

1874 : CGS system, a unit system based on centimeter, gram, and second

May 20, 1875

« Convention du mètre » signature (17 countries – today 56) Bureau International des Poids et Mesures (BIPM) (International Bureau of Weights and Measures)

1889 : 1st CGPM (General Conference on Weights and Measures)

International prototypes for the metre and the kilogram. Together with the second as the unit of time -> MKS system based on **metre**, **kilogram**, **and second**.

1954 : 10th CGPM : introduction of **the ampere, the kelvin and the candela** as base units,

1960: 11th CGPM : The name International System of Units, with the abbreviation SI

1964: 12th CGPM : Becquerel (derived unit)

1971: 14th CGPM : adding the mole

Système International d'unités

The recommended practical system of units of measurement is the International System of Units (*Système International d'Unités*, **SI**). This SI consists of a set of **base units**, **prefixes** and **derived units**,

Name	Symbol	
metre	m	
Kilogram	kg	
Second	S	
Ampère	А	
Kelvin	К	
mole	mol	
candela	cd	

Evolution of derived units :

Derived units: are formed by combining the base units according to the algebraic relations linking the corresponding quantities.

The SI is not static but evolves to match the world's increasingly demanding requirements for measurement.

calorie ->joule (1 cal= 4.1855 J) 1 J = 1 W.s = 1 N.m = 1 kg m².s⁻¹. Radioactivity unit : curie (1 g ²²⁶Ra) \rightarrow becquerel (1 decay per second) 1 Ci = 3,7 10¹⁰ Bq

. . .

Problem of units ...

Mars Climate Orbiter (1999)

2 development teams using different units systems...

- Output of the software in imperial unit : pound-seconds (lbf x s)

- Input was expected in SI unit : newtonsecond (N.s)
 - 1 pound-force= 4.48 newtons
 - → Destruction of the NASA space probe Cost : US\$ 125 M

International organisation

Bureau International des Poids et Mesures (BIPM)

"The mission of the BIPM is to ensure and promote the global comparability of measurements, including providing a coherent international system of units for:

- Scientific discovery and innovation,
- Industrial manufacturing and international trade,
- Sustaining the quality of life and the global environment.

http://www.bipm.org/

Consultative Committees (for the different fields) Ionizing Radiations : CCRI

Regional Organisations

EURAMET

International organisation

Système International de Référence (SIR)

Together with the National Metrology Insitutes (NMIs), the BIPM The BIPM provides equivalence and mutual recognition of reference standards, traceable to the SI.

In the field of ionizing radiation : Système International de Référence (SIR)

The γ -ray emitters, in liquid or gaseous form, are sent to the BIPM where they are compared with standard sources of very long life times (²²⁶Ra) using pressurized ionization chambers.

International comparisons

Système International de référence (SIR) (BIPM)

Missions of the NMIs

To allow users access to **metrological references** they need under a rigorously established **traceability**

National metrology chain

International metrology chain

Activity measurements

At LNHB:

Different techniques to fit the radionuclide specificity (decay scheme and physical state (liquid, solid, gas)):

- Coincidence technique measurements
- 4p β - γ counting

- Liquid scintillation counting - Development of the TDCR method

- Gaz counting
- Alpha counting
- ²²²Rn specific standard
- Calibration transfer by Ionization chambers

Mass (volume) activity relative uncertainty : a few 10-3

Validation by participation to SIR (International Reference System) of the Bureau International des Poids et Mesures (BIPM)

Radioactivity metrology

Activity measurements by β - γ coïncidences

Neutron flux measurements

Beta-emitting nuclide measurements by liquid scintillation (TDCR)

Radiochemistry and source preparation

222Rn primary standard

Calibration transfer LNHB : Ionisation chamber (well-type)

Cryogenic detectors

National metrology chain

¹⁸F activity

Medical application : users needs close to the best possible measurements

Primary measurement TDCR method

Laboratoire National Henri Becquerel

Seconday measurement Ionisation chamber

User: activimeter

Relative uncertainty 0.5 %

3 - 4 %

10 HPGe calibrated detectors

(1 low-activity et 1 high activity : source at 3 m from the detector)

1 Si(Li) detectors

Energy range : Some 100 eV -> 4 MeV

Activity range : mBq -> GBq (10¹²)

3 mains tasks:

Measurement of gamma impurities in standard solutions – identification and quantification

Activity measurement (relative uncertainty: about 1% as the efficiency calibration is achieved with about 0.5 % relative uncertainty)

Measurement of photon emission intensities

Conventional equipment

Conventional detectors and associated analogue electronics

But used with cautions :

Accurate and reproducible source positioning system Source-to-detector distance = about 10 cm To reduce positioning uncertainties

To reduce coincidence summing corrections

Basic principle: activity measurement

Main corrective factors:

Coincidence summing (some 10⁻² for a radionuclide with cascade decay scheme at 10 cm) Geometry transfer (reference calibration : point source)

Software «ETNA » developed at LNHB

🐬 Etna			
Options ?			
<u>T</u> ransfert de rendement	Corrections de coïncidences Divers		
Nucléide	Sb124	Nucléide fils	Te124
- Géométrie			
Géométrie d'étalonnag	G1 SP reference	oonctuelle à 10 cm	Propriétés de la géométrie d' <u>é</u> talonnage
			Ajouter une géométrie d' <u>é</u> talonnage
Géométrie de mesure	G1 avec flacon peni 💌		Propriétés de la géométrie de <u>m</u> esure
🔽 La géométrie de m	esure est différente de la géométrie d'étalonnag	e	Ajouter une géométrie de <u>m</u> esure
Propriétés du fichier de	e sortie		
Type du fichier	ASCI		
Nom du fichier	C:\Corco.txt		<u> </u>
	Calculs simplifiés C Calculs complets	<u>D</u> ébut des c	calculs

