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Geometry corrections: applications

1. Definition of full energy peak efficiency (FEPE)
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- Well-type detectors

4. Measurement of the efficiency for 100 – 3000 cm3 volume sources
5. Measurement of the efficiency for big volume sources
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1. Definition of full energy peak efficiency (FEPE)

Ideally the full energy peak of energy E is defined as the part of the spectrum that 
corresponds to the complete absorption of the photons of energy E in the 
detector.

ED = E

-The full energy peak efficiency then should be the ratio of the number of events 
when the complete energy E was deposited in the detector to the number of 
photons of energy E emitted from the source

-Problem: the energy deposited can not be directly measured!

-The signals in the spectrum corresponding to a given energy deposited ED are 
distributed in a finite width of a peak with a given shape (fluctuations in the 
number of charge carriers, charge collection, electronic noise)
-The peak is superimposed over a background
-Part of the background can be due to the photons that deposit an energy smaller 
than E by a very small amount.



  

Monte Carlo simulation

Photons that deposited the 
complete energy E in the detector

Photons that were scattered in the 
source by low angle Compton 
effect. The energy deposit ED < E 
but the signal is included in the 
peak



  

Debertin and Helmer (Gamma- and X-ray spectrometry with semiconductor 
detectors, 1988, pag. 206):
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ε(Ε)  the full energy peak efficiency
n(E) the count rate in the peak of energy E
R(E) the rate at which the photons of 
energy E are emitted from the source

The efficiency “is related to a specific source-detector geometry and a 
particular peak analysis procedure; it is not a property of the detector”
-many different peak analysis procedures exist

-Simple summation of the counts in a given limit
-Simple fit of a single peak
-Decomposition of multiplets

-Important when sample is analyzed on the basis of a calibration standard: 
⇒how reproducible is the procedure (assuming the calibration standard and 
the sample are analyzed with the same peak analysis procedure)

How is the FEPE measured?



  

- frequently the peaks in the calibration spectrum and the peaks in the 
spectrum of the sample have different statistics; 
- Is the procedure sensitive to the shape of the peak?
- How sensitive is to the background estimation? (background 

contribution may be different)

How is the FEPE computed?
-In Monte Carlo codes (Vidmar et al., ARI 66 (2008) 764):
1. By counting the events when the photons did not interact in other media 

except the active volume of the detector and were completely absorbed in 
the active volume of the detector

2. By simulating the spectrum of energy deposition in the detector and 
counting the events from the channel of the spectrum corresponding to the 
energy E
- dependence on the width of the channel – no possibility to discriminate 

in the channel the events in which a small energy was lost due to 
interactions outside of the active volume of the detector from the 
events when the complete energy of the photon was detected;

- Very small channel width not appropriate due to rounding errors



  

3. Simulation of the energy deposition ED and distortion of the signal from the 
spectrum according to a Gaussian distribution (Decombaz et al., NIM 312 (1992) 
152):

- without detector resolution  ED  Ch0 (channel of peak centroid)
- with finite detector resolution σ(ΕD): sample randomly the channel (Ch) 

from the distribution: 








⋅

−−⋅
⋅

= 2

2
0

2
)(exp

2
1)(

σπσ
ChChChpED  Ch, random value 

⇒analyze the simulated spectrum and the measured spectrum with the same peak 
analysis procedure

Are the computations by methods 1 and 3 equivalent?
- Problems: 

-Contribution of the coherent scattering - negligible

-Contribution of low angle Compton scattering outside of the detector at 
low energies (at low energy, weak dependence of scattered photon energy on 
angle e.g. 45 keV: all cases with scattering angle <30° have E>44.5 keV)

-scattering in the environment, in the sample (depends on the matrix of 
the sample), in the source support (point sources)



  

Scattering
medium



  



  

Water sample
R=4.5 cm, H=4 cm

Compton contribution 
under the peak of 45 
keV: 13%

The linear 
approximation or the 
step approximation for 
the background do not 
remove completely this 
contribution

Sima and Arnold, ARI 
67 (2009) 701



  

-Differences in the definition of the measured FEPE (also between various peak 
analysis procedures) and in the definitions of the computed values of the FEPE
⇒The effect of the differences almost cancels out if ratios of two efficiencies 
evaluated similarly are computed
⇒ Transfer method more robust and more reliable (Lepy et al., ARI 55 (2001) 493;
Vidmar et al., ARI 66 (2008) 764). 

Geometry effects
- Probability of a photon to be completely absorbed in the detector depends on 
the emission points
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R(E) – the count rate in the peak of energy E
A – the activity of the source, considered uniformly distributed within V
V – the volume of the source
P(E) – the emission probability of a photon per decay
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⋅− µ - probability of the transmission through the sample

),;( nrET  - probability of transmission through the walls of the sample, 
absorbers
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- probability of complete absorption if entered into the detector
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);( rEP ε - The efficiency for an elementary point source located in the sample

Geometry effects result from the dependence of the integral over the volume of 
the source on the geometry 

Quasi-point source: the dependence of );( rEP ε on the location of the emission 
point within the source volume negligible

)();( ErEP εε ≈
=> 

The difficult part of the computation – the pi term

)],()(exp[1),;( nrlEnrEp ddi
 ⋅−−= µ ???

Low energies - OK
Energies higher than 50 keV – not OK, contribution of multiple scattering
Selim et al., Rad. Phys. Chem 48 (1996) 23; Abbas, ARI 54 (2001) 761 – the 
“peak attenuation coefficient” – insufficiently founded

for any r within the volume of the sample



  
O. Sima - ICRM 2009 Bratislava



  

2. Measurement of the efficiency for point sources

Use of standard sources traceable to NMI
Single gamma nuclides + Co-60 + Y-88 
-Correct for dead time  
-Correct for decay time

Uncertainty – standard activity uncertainty, Pγ uncertainty



  

Best accuracy 
– 0.1 % for the ratio of the efficiency at E1 to the efficiency at E2 in the energy 
range 433 – 2754 keV (Luddington and Helmer, NIMA 446 (2000) 506)
- 0.2 % uncertainty of the absolute value of the efficiency from 50 to 1400 keV
(Helmer et al., NIMA 511 (2003) 360)
-0.4 % uncertainty of the absolute value of the efficiency from 50 to 4800 keV 
(Helmer et al., ARI 60 (2004) 173).

Use of point source measurements for mapping the point source efficiency close 
to the detector – position of the source very important

Uncertainty of the measured efficiency points – at best the source’s uncertainty
Uncertainty of the values of the efficiency curve ?
-at energies above 200-300 keV – safe interpolation (but problems with Co-60, Y-88)

=> uncertainty probably 2 %
-around the maximum of the efficiency curve (80 – 180 keV)

=> higher efficiency, less measured efficiency points available
-correlations in the efficiency curve at different energies

=> complications in the evaluation of the uncertainties



  

3. Measurement of the efficiency for small volume sources

Small volume sources 
– self-attenuation not important
- elementary point source efficiency dependence on the position of the emision 
point inside the volume of the source not negligible

);( rEP ε not constant over the volume of the sample

Variation due especially to solid angle variation; source close to the detector

-geometry effects more important
-If the sample and the standard are not exactly the same

⇒Keep the mass the same?
⇒Keep the height the same? => much better



  

Relative error of activity δ(A) (%) when the reference has a height 
less by 1 mm than the sample. Soil sample, R=3.5 cm.
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⇒High uncertainties due to the geometry
⇒The efficiency varies strongly with the position, coincidence summing - 
stronger

⇒Solution
⇒Well-type detector

- the change in the solid angle very small
- insensitive to the position of the sample
- the detector can be lined with absorbers to reduce coincidences with 

X-rays
Gelsema and Blaauw, NIMA 368 (1996) 410

Small sensitivity to geometry (efficiency and FC)
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Both closed end coaxial detectors and well-type detectors:
=> Uncertainty of the values of the measured efficiency – similar consideration 
as for point sources (dependence on the energy range) (Assuming no geometry 
induced uncertainty) 



  

Both geometry and attenuation effects are important

Efficiency curve for the standard samples – interpolation for other energies

4. Measurement of the efficiency for 100 – 3000 cm3 volume sources
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Cylindrical samples, H=5 cm
Efficiency around the maximum – depends on sample matrix
     => the limit between the low and high energy of the efficiency curves 
specific to the sample matrix



  

Spiked samples

Homogeneity – both for standard, for spiked sources and for measured samples

Test
-measurements using symmetry
-Use both gamma transition peaks and sum peaks when available
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If the efficiency is constant, no possibility to check homogeneity, S0 and S(r) will
give the same count rate; normal peaks and sum peaks sample differently the 
non-homogeneity of the sample
=> Simply adding an uncertainty due to the non-homogeneity of a CRM not a 
solution; the effect of non-homogeneity is different for different peaks of the 
same nuclide. Correct evaluation of the sample only if the computation uses 
exactly the same peak as when the effect of non-homogeneity was evaluated



  

Efficiency transfer

-Similar samples – GESPECOR
=> Correlated sampling – good uncertainty

Sima and Arnold, ARI 56 (2002) 764



  

Efficiency transfer for volume sources with 
slightly different geometry

• actual geometry slightly different from the reference 
geometry
–  identical containers but different filling height

• Transfer factor: 
– Monte Carlo simulation based on a correlated sampling technique
– simultaneous computation of each efficiency 

Actual geometry             Reference                Simulation



  

Transfer factor as close to 1 as possible:
-Method of the representative point (Jun Saegusa, ARI 66 (2008) 774) 

-Point source efficiency close to the efficiency for the volume source

*



  

In the case of vacuum sources the count-rate (CR) for the big source satisfies:
CR4(3S) = CR1(S) + CR2(S) + CR3(S)
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Sources bigger than the CRM available



  

In the case of vacuum sources the count-rate (CR) for the big source satisfies:
CR4(3S) = CR1(S) + CR2(S) + CR3(S)

D D D D

S

    1                   2                  3                             4

Sources bigger than the CRM available



  

In the case of vacuum sources the count-rate (CR) for the big source satisfies:
CR4(3S) = CR1(S) + CR2(S) + CR3(S)

D D D D

S

    1                   2                  3                             4

Sources bigger than the CRM available



  

In the case of vacuum sources the count-rate (CR) for the big source satisfies:
CR4(3S) = CR1(S) + CR2(S) + CR3(S)
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⇒Correct the effects of self-attenuation:  εi(E; 0) = Fai(E; 0; m) εi(E; m)
⇒ Linear relations between the values of efficiency in geometry 4 and 
the efficiencies in geometries 1, 2 and 3 with reliable coefficients
εV(E; 0) = [ε1(E; 0) V1 + ε2(E; 0) V2 + ε3(E; 0) V3]/V, with V=V1+V2+V3

εV(E; m) = FaV(E; m; 0) εV(E; 0)

Sima and Dovlete, JRNCL 200 (1995) 191

Sources bigger than the CRM available



  

5. Measurement of the efficiency for big volume sources

Waste drums of 200 l
Experimental calibration: shell sources method

Liang et al., ARI 47 (1996) 669
Sima et al., ARI 61 (2004) 123
Toma et al., NIMA 580 (2007) 391

Stanga et al., ARI 68 (2010) 1418



  
M. Toma, PhD Thesis, University of Bucharest, 2010



  

In all transfer methods it is better to have the geometry as close 
as possible, but also the detector response should be as much as 
possible the same (decrease also the statistical uncertainty)
⇒Response function, applied for each computation
⇒Advantage also from the point of view of time of Monte 
Carlo computation
     Sima, ARI 68 (2010) 1403



  
O. Sima - ICRM 2009 Bratislava
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6. Summary

-Experimental calibration precise, but possible only for specific nuclides and 
geometries
-Smaller uncertainty of the values of the efficiency directly measured
-Higher uncertainty of the calibration curve
-Efficiency for samples for which no standard exists – higher uncertainty
-Transfer method very useful
-Best results with transfer method when the two configurations are similar
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