Uncertainty calculations (GUMUF and MC), and calculation of critical limits

Henrik Ramebäck Swedish Defence Research Agency, FOI, Umeå, Sweden

Invited lecture at NKS GammaSkills 2023

Covered during the training day

GUMUF vs. MC

© Swedish Defence Research Agency

The GUM method:

A tool for easy uncertainty propagation is beneficial! Suggestion: Kragten spreadsheet (or a dedicated software...)

J. Kragten, 1995, Chemom. Intell. Lab. Syst., 28, 89

+8: Reporting the measurement result

The GUM Uncertainty Framework (uncertainty propagation)

Holds when:

- The model equation is linear (or the uncertainties of non-linear input quantities are 'small enough')
- The probability distributions of the input quantities are normal

→The GUMUF gives (almost) exact results but can otherwise often give results that are fit-forpurpose for most applications...

The GUM Uncertainty Framework (uncertainty propagation)

Does not hold when:

- The model equation is non-linear
- The probability distributions of the input quantities are not normal and have a significant contribution to the uncertainty

→ The GUMUF gives (almost) exact results but can otherwise often give results that are fit-for-purpose for most applications...

- →Propagate distributions (MC)
- Might have implications on mean value and percentiles (Remember: decisions!)

MC calculation: The principle

Distributions

- Here we will consider draws from two distributions:
 - -Normal -Rectangular

Draws from other distributions, see JCGM 101:2008

Data sampling: Normal distribution

Normal distribution:

- Random samples from the distribution :
- Excel: x=NORM.INV(prob; mean; std unc)
 prob=RAND()
 mean=1
 std unc=0.05
- *n*=100 000:

Data sampling: Rectangular distribution

Rectangular distribution:

 Random samples from the distribution:

• *n*=100 000:

Data analysis in Excel

 Analyse the measurand with respect to the mean, standard deviation and confidence interval (CI): -AVERAGE(range); range: the sample size (n) -STDEV(range) CI: -PERCENTILE(range; prob.) gives CL for a given probability Ex: For 95% CI calculate PERCENTILE(range; 0.025) and PERCENTILE (range; 0.975) \rightarrow Probabalistic symmetric: Instead of $\pm a$, stated as (+b; -c). If linear (enough) $a \approx b \approx c$

Example: Efficiency transfer

- Uncertainties, norm.dist.,
 k=1:
 - $-N_{net}$: 1% $-I_{\gamma}$: 0.1% $-t_{m}$ constant $-\varepsilon$: 1%
 - *m*_{sample}: 0.1% -*k*_{ET}: 5%

$$A = \frac{N_{net}}{t_m \cdot \varepsilon \cdot k_{ET} \cdot I_{\gamma} \cdot m_{sample}} \cdot (k_{TCS})$$

Dashed red: Uncertainty propagation

Example: Efficiency transfer

- Uncertainties, norm.dist., k=1: $A = \frac{N_{net}}{t_m \cdot \varepsilon \cdot k_{ET} \cdot I_{\gamma} \cdot m_{sample}}$
 - -N_{net}: 1%
 - *-Ι*_γ: 0.1%
 - *t*_m constant -ε: 1%
 - -*m*_{sample}: 0.1% -*k*_{ET}: 5% rect. dist. (half-width)

Dashed red: Uncertainty propagation

 $\cdot (k_{TCS})$

Critical limits: Decision threshold and detection limit

Why determine decision thresholds and detection limits?

- At the end of the day our measurement results are to be used as a part in a decision making process.
- Is a measurement method fit-for-purpose, *i.e.* can we use it for its intended use?
- What if the detection limit is above *e.g.* a regulatory limit or too close to it?
 - → The method will not be fit-for-purpose!
- We might then need to modify the method if possible (other geometry, count longer, measure a larger sample,...), or use another method:
 -Gamma spectrometry vs. alpha spectrometry vs.
 mass spectrometry for measurement of *e.g.*²⁴¹Am

ISO 11929-1:2019

Decision threshold, y*:

"value of the estimator of the measurand, which, when exceeded by the result of an actual measurement using a given measurement procedure of a measurand quantifying a physical effect, is used to decide that the physical effect is present

Detection limit, y#:

"smallest true value of the measurand which ensures a specified probability of being detectable by the measurement procedure

Observe terminology: Detection limit, MDA,..., sensitivity

The single ROI based approach

- Here we consider the gross number of counts in a region of interest, ROI, with the same width as the peak and close in energy to the peak
- Regions both above and below the peak may be considered if there is not too much of a step between the high- and low energy side

The single ROI based approach

- We will consider the paired observation case
- Applies when $t_{sample} = t_{BG}$
- Or in gamma spectrometry when the ROI of the background estimation has the same width as the peak (same number of channels)

ISO 11929-1:2019

The estimate y of the measurand Y is a function of several input quantities:

 $y = f(x_1, x_2, \dots, x_n)$

A model equation for radiation measurements:

 $y = w \cdot (N_G - N_{BG})$

(*w* is the conversion factor for calculating *e.g.* an activity per mass unit from, here, a number of observed counts in the sample and background measurements) Uncertainty propagation applying the GUMUF gives:

 $u(y)^2 = w^2 \cdot (N_G + N_{BG}) + (N_G - N_{BG})^2 \cdot u(w)^2$

ISO 11929-1:2019

:
$$u(y) = \sqrt{wy + 2N_{BG}w^2 + y^2 \frac{u(w)^2}{w^2}}$$

Decision threshold:

$$y^* = k_{1-\alpha} u(0)$$

Detection limit:

$$y^{\#} = y^{*} + k_{1-\beta} u(y^{\#})$$

Set $k_{1-\alpha} = k_{1-\beta} = k$

 $y=0: y^* = kw\sqrt{2N_{BG}}$

...y=y#:
$$y^{\#} = w \frac{k^2 + 2k\sqrt{2N_{BG}}}{1 - k^2 u(w)_{rel}^2}$$

Currie, or the signal domain (Paired observation)

ISO 11929:2019 considering the uncertainty of the conversion factor $w \rightarrow$ Activity domain

Decision threshold, y*

The decision threshold is a quantile of the net background distribution! α is the risk of a false positive detection (area under the distribution above the critical limit, not including

the limit!).

 $y^* = k_{1-\alpha}u(0)$

Distribution of net signal of the background (no analyte present; paired observations) $(N_{\text{net}}=N_{\text{BG}}-N_{\text{BG}})$ $u(0) = \sqrt{2N_{BG}}$

 $\alpha = 5\% \rightarrow k_{1-\alpha} = 1.645 \rightarrow$

 $y^* = k_{1-\alpha} \sqrt{2N_{BG}} = 2.326 \sqrt{N_{BG}}$

Decision threshold, y*

Detection limit, y#

- Decide that something is not present when it is \rightarrow Error of the second kind (β)
- Normally we accept a 5% risk that we decide that something is not present although it is (at the detection limit).

 $\beta = P(y \le y^* | \tilde{y} = y^\#)$

Hypothesis test:

We want to make the decision if, here, the net signal is statistically different compared to the net background signal for given risks.

Detection limit

Is the net signal statistically different compared to the net background signal for the *a priori* risks α and β ?

 $y^{\#} = y^* + k_{1-\beta} u(y^{\#})$

-Simple case assuming $u_0 \approx u_{y\#}$: y[#]=2y* (detection limit is twice the decision threshold) (This applies relatively often in gamma ray spectrometry.)

<i>Currie:</i> y [#] =2.71+2y* vs. y [#] =2y*:	
	Error if y#=2y*
N _{BG} =30:	1.11
N _{BG} =100:	1.06
N _{BG} =300:	1.03
N _{BG} =1000:	1.02
N _{BG} =3000:	1.01

The signal domain vs. the activity domain

- Currie (1968) considered when a signal can be considered to be above a critical limit, e.g. y>y[#] (N>L_d)
- What if the uncertainty in the conversion factor, w, transforming a signal to the unit of the measurand is large?

Signal
$$\xrightarrow{w}$$
 Activity

The conversion factor, w

- Factor to convert an observed instrumental signal/response, *e.g.* counts, to the unit of our measurand (*e.g.* activity concentration [Bq/kg])
- In gamma ray spectrometry:

Efficiency; ET correction; measurement time; photon emission probability; mass of sample

 $w = \frac{1}{\varepsilon \cdot k_{ET} \cdot t_m \cdot I_\gamma \cdot m}$

(The conversion factor may, of course, also include other correction factors like k_{TCS} , decay correction,...)

MDA_{Currie} vs. MDA_{ISO:11929}

• *MDA* calculated according to Currie only consider the dispersion in the observed background signal:

 $y^{\#} = MDA_{Currie} = w\left[k^2 + 2k\sqrt{2N_{BG}}\right]$

• *MDA* calculated according to ISO 11929 consider also the dispersion in all other input quantities

$$y^{\#} = MDA_{ISO11929} = w \frac{k^2 + 2k\sqrt{2N_{BG}}}{1 - k^2 u(w)_{rel}^2}$$

- When calculating the detection limit in the unit of the measurand, the uncertainty of the conversion factor should be considered
- Implications when the relative uncertainty in w is 'large' (denominator in the equation below becomes <0)

$$MDA_{ISO11929} = \frac{MDA_{"Currie"}}{1 - k_{1-\beta}^2 u_{rel}(w)^2}$$

 For small uncertainties in the conversion factor (<5%, k=1) this will only be of marginal consequence, but for larger ones it has to be considered.

number of counts (from counting statistics)

- When do we have large uncertainies in the conversion factor?
- -*In situ* gamma ray spectrometry measurements -Laboratory measurements in the low energy region (matrix effect) and correction(s) using ET (no Cutshall correction) for matrices, like sediments, with 'unknown' composition

- For very large uncertainties in the conversion factor the denominator eventually change sign and becomes negative. For β=5% this happens when u_{w.rel}≈60%.
- This results in negative detection limits for u_{w.rel}>60% (and ∞ and -∞ when u_{w.rel}≈60%)
- Why?

$$MDA_{ISO11929} = \frac{MDA_{Currie}}{1 - k_{1-\beta}^2 u_{rel}(w)^2}$$

Why?

- When the relative uncertainty of the conversion factor becomes large, a large part of its lower tail will be on the negative side.
- This will result in a fraction of the activity distribution ending up as negative activities. (Activity is a non-negative quantity!)

 $u(w)_{rel} = 62\%$

200

- For *large* uncertainties in *w* and modelling with a normal distribution there will be a large probability for negative *w*
- Activity is a non-negative measurand: The input quantities for calculating *w* could not be negative→Non-physical (*k*_{ET}>0; *m*>0; *t*_m>0; *l*_γ>0; ε>0)
- Choose to model, here k_{ET} , with a distribution not resulting in negative values:
 - -Rectangular; Triangular;...

→MC-methods and restricting w to only positive values (see ISO 11929-2:2019 ...Part 2: Advanced applications)

Two observations:

 MC calculation of critical limits: Restrict *w* to only positive values. Here we model *k*_{ET} with a wide rectangular distribution (*a*=0.01; b=1.99)

• GUMUF results in no influence of *u*(*w*) on the decision threshold, but using MC we can see an influence in the tails

Relevant literature

- L.A. Currie, *Limits for qualitative detection and quantitative determination. Application to radiochemistry*, Anal. Chem., 40, 586, 1968
- J.C. Lochamy, *The minimum-detectable-activity concept*, NBS SP456, 1976
 (consider when t_{sample}≠t_{BG})
- ISO 11929-1:2019:

Determination of the characteristic limits (decision threshold, detection limit and limits of the coverage interval) for measurements of ionizing radiation – Fundamentals and application – Part 1: Elementary applications

• ISO 11929-2:2019:

Determination of the characteristics limits (decision threshold, detection limit and limits of the coverage interval) for measurements of ionizing radiation – Fundamentals and application – Part 2: Advanced applications

Summary

- MC is a better choice for uncertainty calculations when the criteria for GUMUF do not hold
- Critical limits are important since it tells if a method would be fit-forpurpose
- The ISO 11929:2019 requires that the uncertainty of the conversion factor is considered when determining crtitical limits
- The ISO 11929:2019 will be fit-for-purpose for most laboratory applications
- Very large uncertainties in the conversion factor will eventually result in negative detection limits
- This might be solved using MCM and modelling the input quantities considering only positive values. Again, *A* is a non-negative quantity

henrik.ramebeck@foi.se

© Swedish Defence Research Agency