

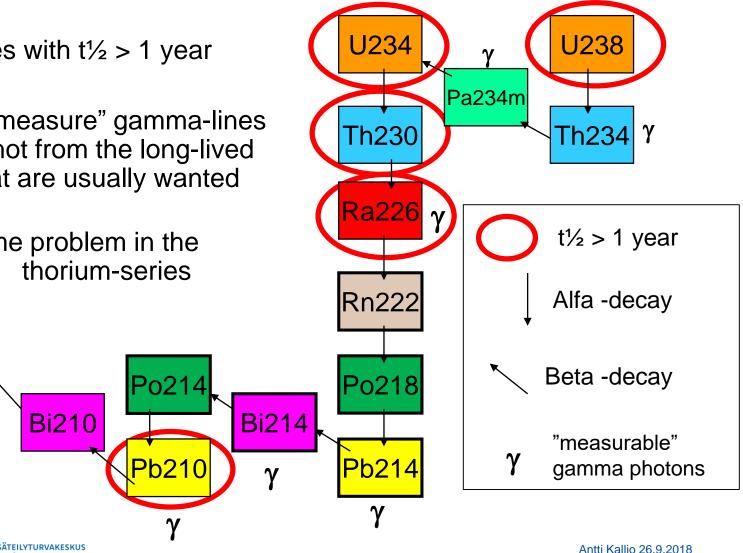
(Gamma spectrometric) Analysis of natural series using UniSampo-Shaman – case studies and considerations

NKS – GammaRay 2018 seminar Iceland, Reykjavik 25-26.9.2018 Antti Kallio, STUK

Contents

- Natural series
- Measurement of natural series using gamma spectrometry
- UniSampo-Shaman (USS)
- Case 1
- Case 2
- Considerations for using USS in the analysis of natural series spectra

Uranium series

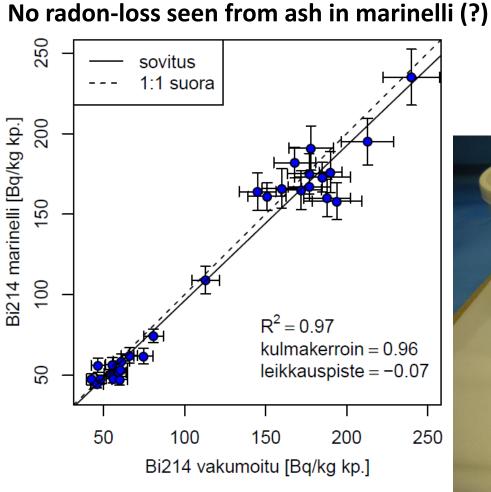

Po210

Pb206

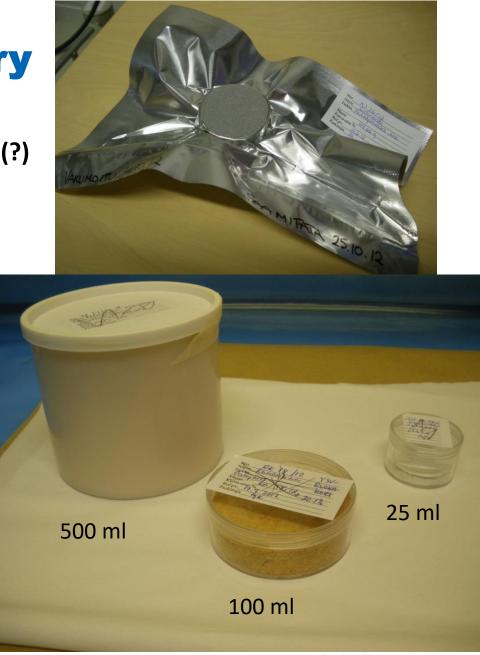
🕅 stuk

- Five nuclides with $t\frac{1}{2} > 1$ year
- "easiest-to-measure" gamma-lines are mainly not from the long-lived nuclides that are usually wanted for results

-> same problem in the thorium-series


Measurement of natural radioactivity

Reporting	Measurem	nent		Energies				
K-40	К-40]	10]			1460.8 keV			
Cs-137	Cs-137			661.7 keV				
Be-7	Be-7	"easy"		477.6 keV				
Ra-228	→ Ac-228			338.3 keV, 911.2 keV Overlapping				
Pb-210	Pb-210	Thin geomet	ry	46.5 ke\	energies			
Ra-226 <i>Rn</i>) Bi-214, Pb-	Bi-214, Pb-214, Ra-226			609.3 keV, 351.9 keV, 186.2 keV			
Th-228 <i>Rn</i>	Pb-212, Tl-	-208**	Vacuum	238.6 keV, 583.2 keV, 2614.5 keV				
Th-232* <i>Rn</i>	Ac-228, Pb	-212, TI-208**	ר pack	<1%	<	5%		
U-238 —	→ Pa-234m, ⁻	a-234m, Th-234, (U-238)			keV,63.3 keV,92	2.6 keV,49.6 keV		
U-235	U-235	w photon yield =: nger measuremei	185.7 keV, 143.8 keV, 163.4 keV					
(U-234)	U-234							


*Th-232 result can only be given if the series is in equilibrium!

**TI-208 nuclide result multiplied with 2.7832 if used for Th-228 (36% branch of Bi-212)

Measurement geometry

Săteilyturvakeskus strålsäkerhetscentralen radiation and nuclear safety authority

Antti Kallio 26.9.2018

Optional approach: "3-step procedure"

- **Step 1**: Thin sample, for Pb-210
- Can be measured immediately
- If there are suspicions of disequilibrium, move to steps 2 & 3
- Thin samples have been used for sediment Pb210dating, and compared with radiochemical Pb-210 results with success
- STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

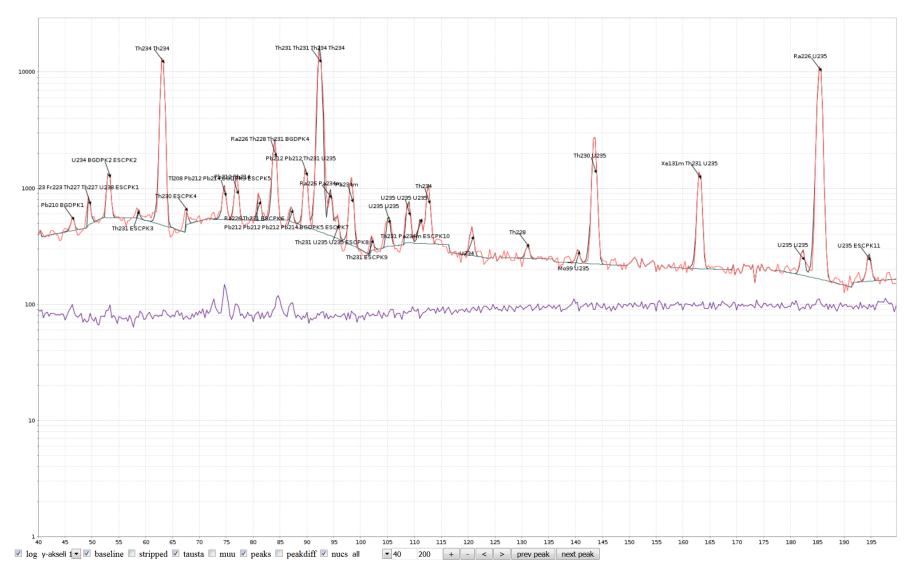
- Step 2: Vacuumpacked sample to prevent Radon-loss
- Needs three weeks of waiting time, not good if results are needed urgently
- Disequilibrium can be identified (decay or ingrowth)

 Step 3: if there is disequilibrium in the thorium-series, make other measurements to get Th232 (e.g. ICPMS where U238 can be measured at the same time)

UniSampo-Shaman (USS)

- Gamma spectrometric software from Baryon Oy, originally made for the monitoring of airborne radioactivity from aerosol filters
- Runs in linux
- USS has been used at STUK for many years for airfilter spectra, and since 2017 as the main gamma-software for all types of samples in combination with NAMIT-interface and LINSSI-database
- Shaman library has around 3600 nuclides and 80 000 gamma and X-ray lines (ENSDF and NUDAT databases, latest DDEP update is underway)
- Shaman library is big, so it is used in binary format to make it faster

 updates cannot be done by the user


UniSampo-Shaman (USS)

STUK USS:

- UniSampo is used for peak search and peak fitting, calibrations and peak data are fed into Shaman
- Shaman will try to find a complete explanation for the whole spectrum using a comprehensive library and rule based system
- Shaman calculates activities, will also try to calculate proportions for shared peaks based on other lines of the same nuclides
- "Raw" activities from Shaman are used in NAMIT to calculate final results
- NAMIT = laboratory interface for USS and LINSSI developed at STUK

Case 1: Measurement of sludge

Case 1: Measurement 1 of sludge

Nuklidi	di (LSQ)		us Epävarm. % (LSQ)		iivisuus i)	suus Epävarm. % (pri)		Havaitsemisraja		effHalfLife	
U234	1118.2254		7.34		1062.208	13.1	116.6786		4.47E9 a U238		
U238	789.8835		15.54	1002.6055		17.21	215.6884		4.47E9 a		
Pa234m	655.3039		3.31		715.5094	6.8	30.4956		4.47E9	a U238	
Th234	542.4284		3.82		510.6889	16.26	2.7609 4.47E9		a U238		
Nuklidi	Energia	Peak	Merkittävyys	5	ExpLevel	Emissie tn	6C	Act		Unc %	
Th234	63.29	5	196.469		1.06	0.048	1.0002	512	.9235	16.26	
Th234	92.38	13	118.494		0.48	0.028	1.000	112	7.6185	12.24	
Th234	92.8	13	119.365		0.48	0.028	1.0001	1 1127.6978		12.24	
Pa234m	766.36	48	8.082		0.96	0.003	1.0003	681	.6413	8.67	
Pa234m	1001.03	51	21.488		0.92	0.008	0.9932	715.5094		6.8	

Shaman user macro:

set user nuclide own_half_life "90Th234 own_half_life \"Use own half life\""

				-		
Nuklidi	Aktiivisuus (LSQ)	Epävarm. % (LSQ)	Aktiivisuus (pri)	Epävarm. % (pri)	Havaitsemisraja	effHalfLife
U234	1088.3075	7.22	1032.7845	12.87	115.2435	246000.0 a
U238	819.762	13.62	1048.6814	16.29	205.7103	4.47E9 a
Pa234m	745.1628	3.5	1051.2664	6.8	44.395	24.1 d Th234
Th234	611.8819	3.81	734.1042	16.26	4.1139	24.1 d

ATEILYTURVAKESKUS TRÅLSÄKERHETSCENTRALEN ADIATION AND NUCLEAR SAFETY AUTHORITY Antti Kallio 26.9.2018

Case 1: Issues with Shaman library 3.1.1

 $\gamma_{5,2}(Pa)$

 $\gamma_{6,2}(\text{Pa})$

 $\gamma_{7,2}(Pa)$

	63.290 (+- 0.031601%	5) 4.800000 (+- 14.5	583332%)		
	73.920 (+- 0.027056%	s) 0.017200 (5.2	Gamma	a Emission	
	83.300 (+- 0.060024%	5) 0.079000 (r	DDEP	/
	92.380 (+- 0.010825%	5) 2.800000 (Energy	
	92.800 (+- 0.021552%	s) 2.800000 (keV	
	103.350 (+- 0.096759%	s) 0.004200 (
_		+- 0.044322%	,		$\gamma_{7,5}(\mathrm{Pa})$	20,01(2)	
Sha	man	Th-234	•		$\gamma_{3,2}(\mathrm{Pa})$	29,50(2)	
Librar	y 3.1.1]	Search by nuc	lide (1) or by	'	$\gamma_{4,3}({ m Pa})$	62,88(2)	
				-		00.00 (0)	

Shaman Th-234 results need to be multiplied by 1.28 (with library 3.1.1)

DDEP Th-234 Photons Energy keV per 100 disint. 20,01(2)0,0051(21)7.5(Pa) 29,50(2)0,00123(14) $_{3,2}(Pa)$ 0,0164(28)62,88(2).,3(Pa) 63,30(2)3,75(8) $\gamma_{5,3}(\text{Pa})$ 73,92(2)0,0133(14) $\gamma_{1,0}(Pa)$ 83,31(5)0,061(5) $\gamma_{7,3}(Pa)$ 92,38(1)2,18(19) $\gamma_{4,2}(Pa)$

92,80(2)

103,35(10)

112,81(5)

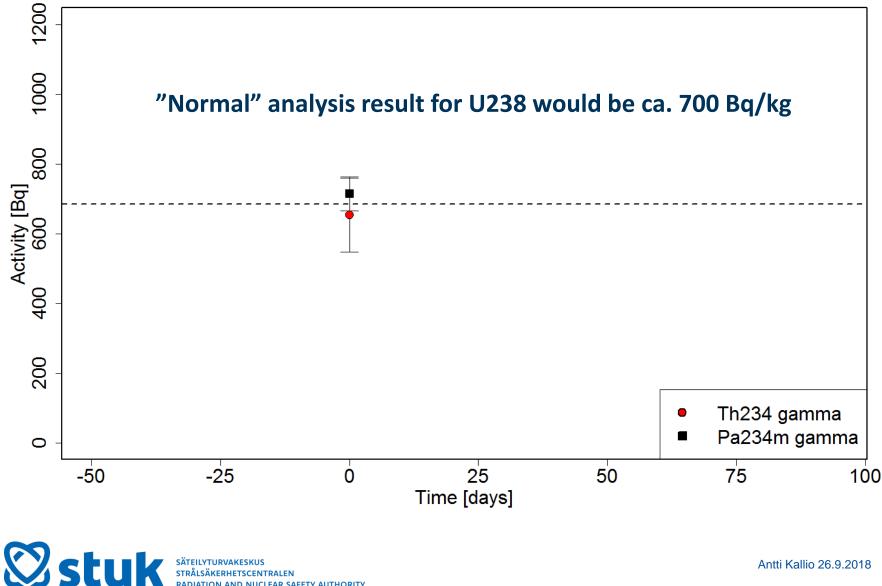
2,15(19)

0,0032(10)

0,215(22)

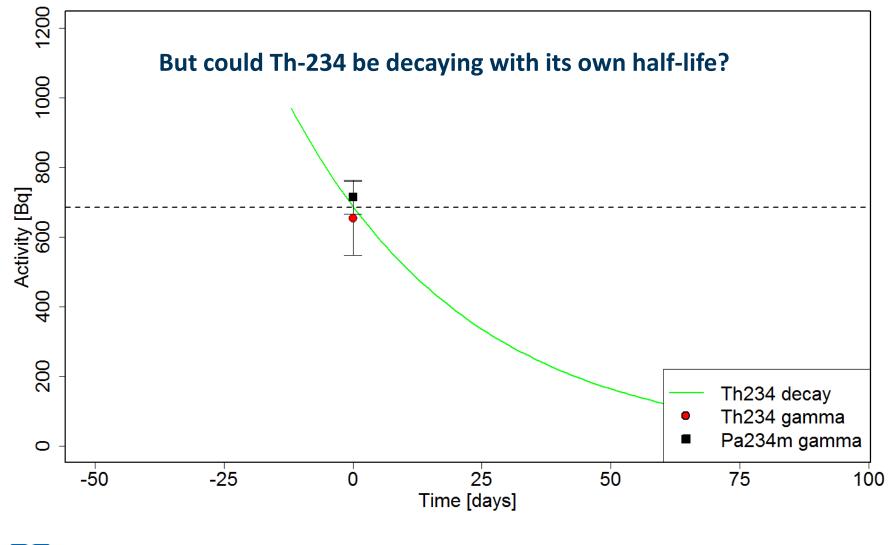
Case 1: Measurement 1 corrected

Nuklidi	Aktiivisuus (LSQ)	Epävarm. % (LSQ)	Aktiivisuus (pri)	Epävarm. % (pri)	Havaitsemisraja	effHalfLife
U234	1088.3075	7.22	1032.7845	12.87	115.2435	246000.0 a
U238	819.762	13.62	1048.6814	16.29	205.7103	4.47E9 a
Pa234m	745.1628	3.5	1051.2664	6.8	44.395	24.1 d Th234
Th234	611.8819	3.81	940	16.26	4.1139	24.1 d


Now everything ok?

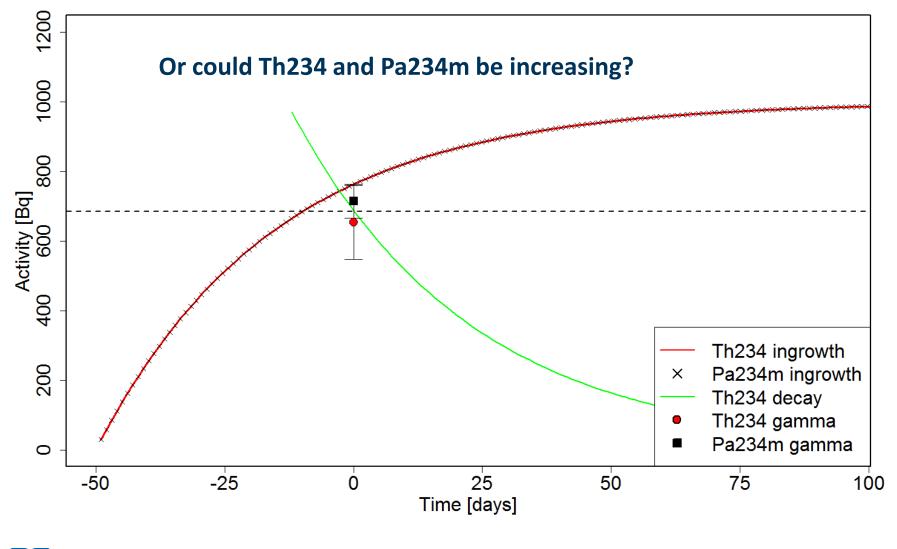
NO!

But how would you know if U238 and U234 were not directly detected?


Case 1

AUTHORITY

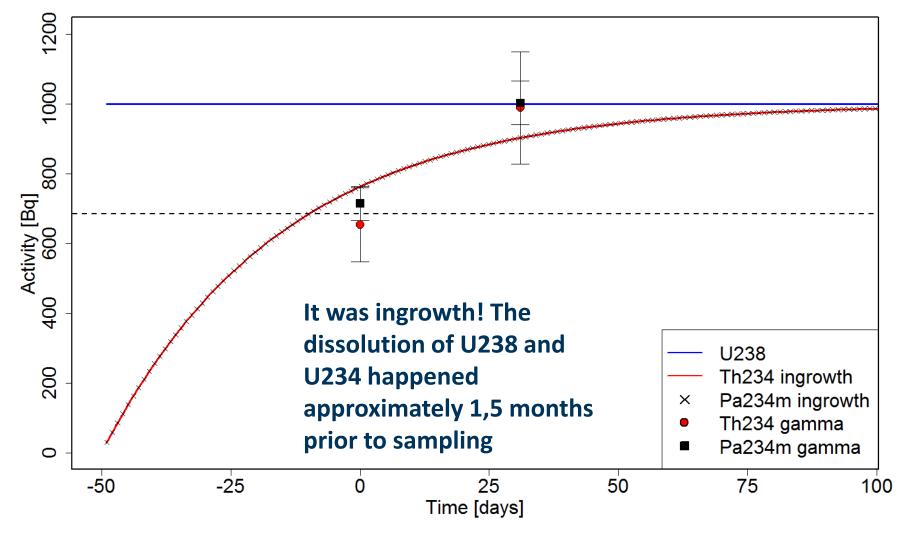
Antti Kallio 26.9.2018



Säteilyturvakeskus strålsäkerhetscentralen radiation and nuclear safety authority

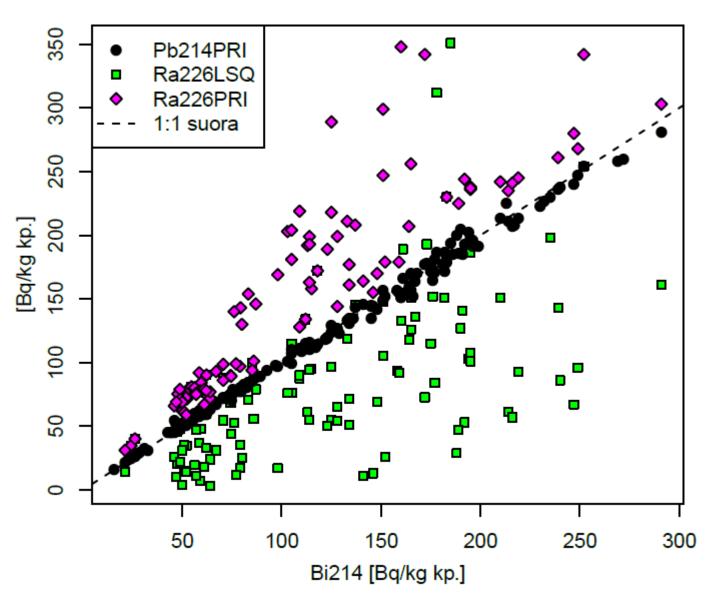
Antti Kallio 26.9.2018

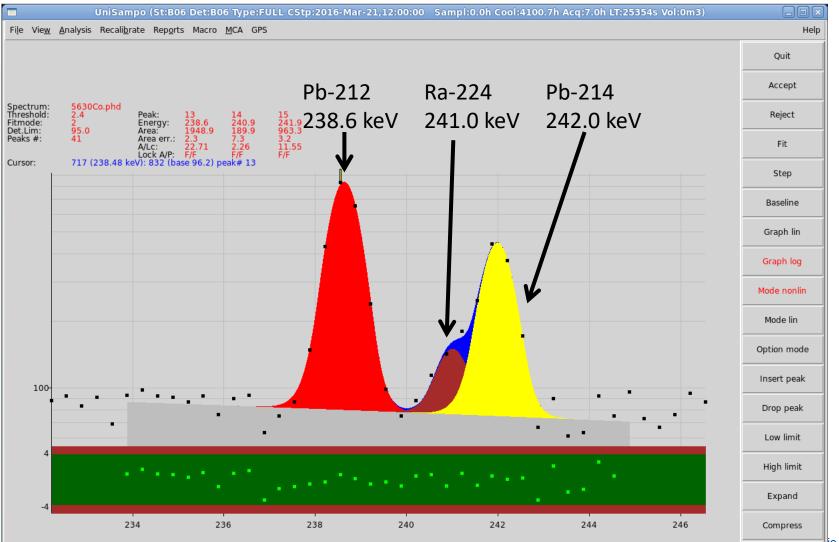
Case 1



Säteilyturvakeskus strålsäkerhetscentralen radiation and nuclear safety authority

Case 1: 2nd measurement after 1 month


Case 1: Measurement 2 included

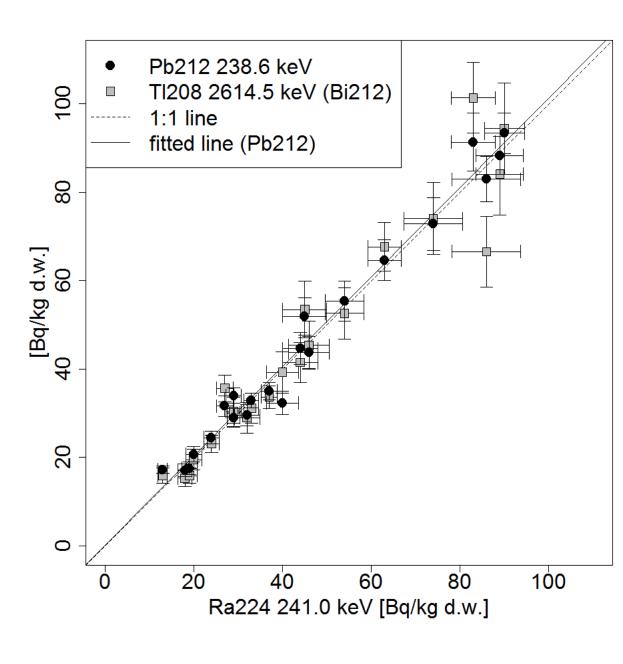


Case 2: Shaman PRI and LSQ results

- ~180 ash samples, where U238,U234 and Ra226 are in disequilibrium
- Ra226 primary peak (186 keV) gives too high results as expected
- LSQ-results are not correct! The shares of U-235 and Ra-226 from Shaman are not acceptable
 Stuk STELLY STRALS/ RADIATI

Case 3: Ra-224 with USS

io 26.9.2018


Prev peak

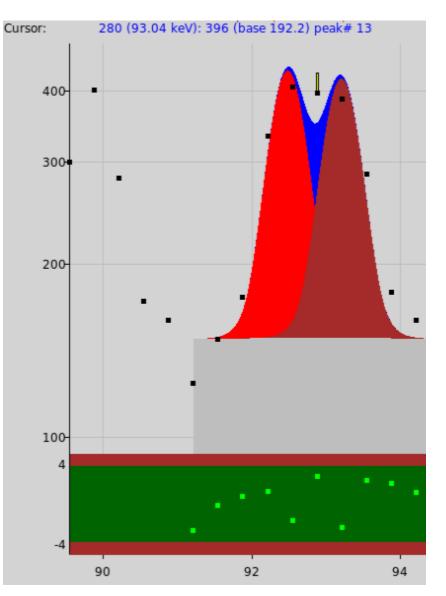
Next peak

Case 3: Ra-224

- Ash samples, thoriumseries in equilibrium, low activity concentrations
- USS Ra-224 results compare well with Pb-212 and TI-208, when analysis is done manually (interactive mode) to check fitting of overlapping peaks

🛛 stuk

USS: considerations for natural series


- UniSampo is good for fitting partially overlapping peaks
 - 241 keV Ra224 between Pb-212 and Pb-214 works well
 - 92.4 & 92.8 keV Th234 doublet

- Baseline can be difficult to "shape" using UniSampo, especially in the low-energy part of the spectrum which has complicated baseline but is important for natural series peaks
- Care is needed even when using "good" daughter peaks like Pa234m 1001 keV and Th-234 63 keV – disequilibrium checks and thinking about the nature of the sample!

USS: considerations for natural series

- UniSampo makes a gaussian fit with exponential tails for all detected peaks
- If double peaks are fitted (e.g. Th234 92.4 keV and 92.8 keV), and the nuclide is also present in the background spectrum, <u>double peaks must also be fitted</u> in the background spectrum
- If only one peak is present in the background, the background is subtracted from only one of the peaks in the spectrum
- Something to watch out for!

Săteilyturvakeskus strålsäkerhetscentralen radiation and nuclear safety authority

USS: considerations for natural series

- Shaman library 3.1.1 is not up to date with Th234
- Shaman LSQ-results cannot be used for natural series without careful checking, except in some equilibrium cases
- Shaman selection of primary peak depends on peak significance
 - "primary peak" is not a universally robust way to select peaks for analysis of natural series
 - e.g. primary peak is 63 keV in one sample and 92.6 keV in another
- Manual peak selection and checking is needed from peak tables
- TI208 result from Shaman is true TI208 user needs to calculate manually the branching of Bi212 decay if used for Th228

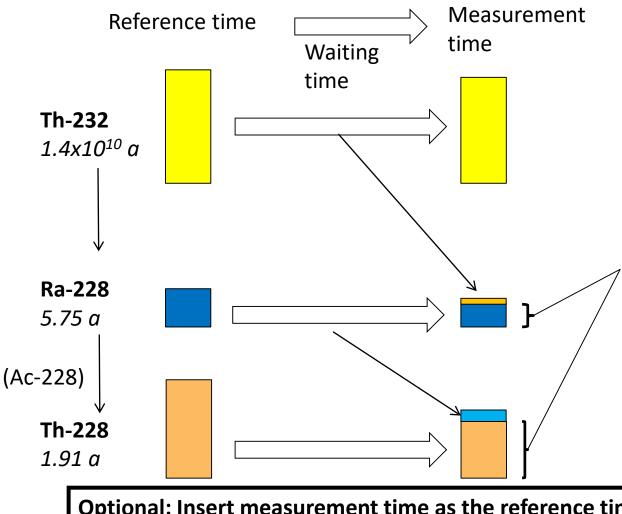
Case 2: Shaman PRI and LSQ results

 Need to calculate the "true" Ra226 proportion from Shaman Ra226PRI (186 keV) result:

= Bi214PRI/Ra226PRI (0.574 in the equilibrium case)

- The remaining share of 186 keV 1-(Bi214PRI/Ra226PRI) is multiplied with Shaman U235PRI to get "true" U-235:
 U235 = U235PRI * [1-(Bi214PRI/Ra226PRI)]
- Sometimes one or the other is not detected by Shaman, depending on other peaks present – need one more calculation step if the detection cannot be forced manually
- U238/U235 is checked, (median) should be close to 21, but can vary in single measurements at least 10-30
- If U >> Ra, the 143 keV peak result can be used directly for U235 (in the equilibrium case multiplied by 0.72)

Săteilyturvakeskus strâlsäkerhetscentralen radiation and nuclear safety authorit


Problems with gammaspectrometric measurements of natural series

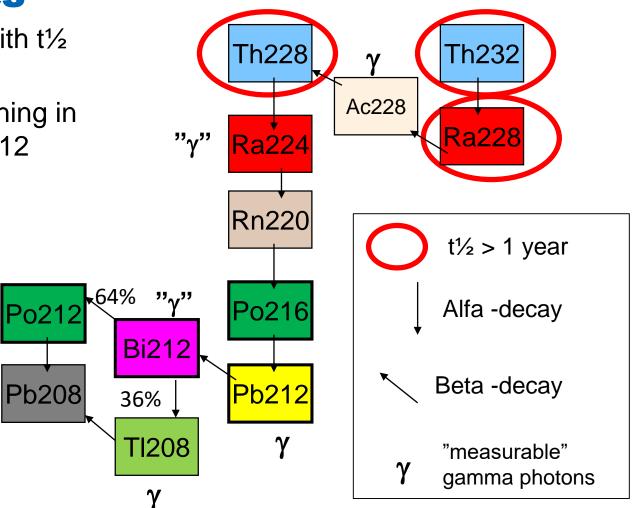
Conditions for a succesful measurement of natural series using gamma-spectrometry (in addition to a working detector, electronics, calibrations, coincidence correction, ...):

Vacuum packed samples with 3 week waiting time

- Sample should stay inside the measuring geometry (radon)
- Photons should make it from the sample to the detector (Pb-210 photon self-absorption) <u>Thin samples or corrective calculation</u>
- Peaks should be distinguishable from background peaks (laboratory background) <u>Background measurements</u>
- Peaks should be resolvable from each other in order to calculate activities (interferences) <u>Resolution/fitting/deconvolution</u>
- Peaks should tell something about the nuclides that are actually of interest (decay series) Daughter nuclides, equilibrium?

Thorium-series disequilibrium

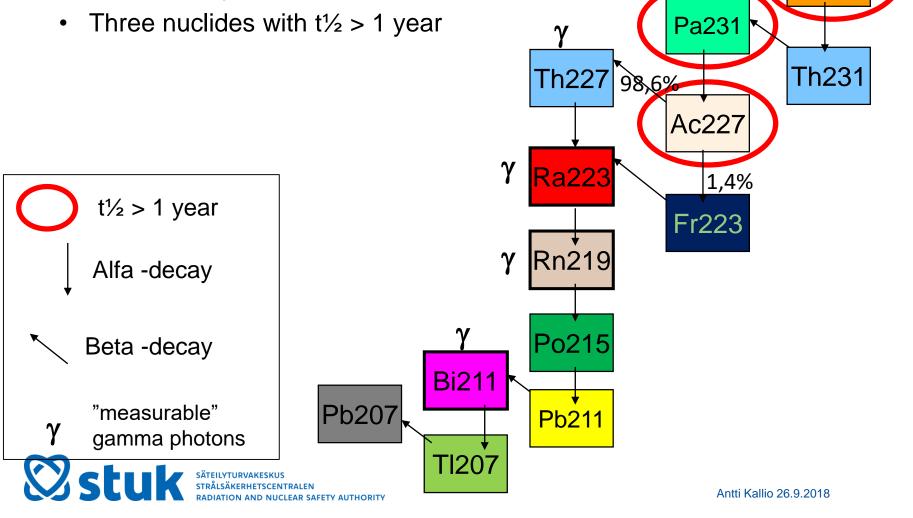
Thorium-series disequilibrium:


If waiting time is significant, e.g. > 1 year, the ingrowth during waiting time must be subtracted step-by-step before making a decay correction.

<u>And</u> Th-232 must be measured using other methods than gamma spectrometry (e.g. ICPMS)

Optional: Insert measurement time as the reference time, no decay corrections needed

Thorium-series


- Three nuclides with t¹/₂
 > 1 year
- Significant branching in the decay of Bi-212

Actinide-series

U-238/U-235 activity ratio in natural samples 21,44

U235

γ