Technical Visit on

Coincidence summing and geometry correction in gamma spectrometry IAEA Laboratories. Seibersdorf. Austria 19-23 July 2010

Coincidence summing correction Simplified procedures

Alessia Ceccatelli

Terrestrial Environment Laboratory-Chemistry Unit

Semi-empirical Method – 1/2

If $1/C_i$ is the correction factor. the equations for calculating C_i have been written in matrix form by Semkow et al.(1990). With some modifications (De Felice et al.. 2000), we have:

Summing in
Summing out

 $C_i = \left[1 + \frac{\sum\limits_{k,m} P_{t_{km}} P_k P_m \varepsilon_k \varepsilon_m}{I_{\gamma_i} \varepsilon_i} \right] \left[1 - \frac{\sum\limits_j P_{t_{ij}} P_i P_j \varepsilon_{t_j}}{I_{\gamma_i}} \right]$

 $\begin{aligned} \mathbf{Pt_{km}} \cdot \mathbf{Pt_{ij}} &= \text{probabilities per decay that the coincidence transitions} \\ & \text{k and m, or i and j, occur} \\ \mathbf{P_k} \cdot \mathbf{P_m} \cdot \mathbf{P_i} \cdot \mathbf{P_j} &= \text{probabilities that in each transition the respective photons} \\ & \gamma_k, \gamma_m, \gamma_i, \gamma_j \text{ will be emitted} \\ & \boldsymbol{\epsilon_k} \cdot \boldsymbol{\epsilon_m} \cdot \boldsymbol{\epsilon_i} &= \text{FEP efficiencies for the photons } \gamma_k, \gamma_m, \gamma_i \\ & \text{etable total efficiency for a generic photon } \gamma_j \\ & \text{IAEA} \end{aligned}$

Semi-empirical Method – 2/2

 $\begin{array}{c} Pt_{km} \\ Pt_{ii} \end{array} \xrightarrow{} bit times the conversion of the conversion of the converse of t$ for each nuclear level involved in the coincidence process

 ε_k . ε_m . ε_i . εt_j \longrightarrow obtained by fitting experimental data (spectra analysis)

Simplified procedure - 1/2

Summing in Summing out $C_{i} = \left| 1 + \frac{\sum_{k,m} P_{t_{km}} P_{k} P_{m} \varepsilon_{k} \varepsilon_{m}}{I_{\gamma} \varepsilon_{i}} \right| \left| 1 - \frac{\sum_{j} P_{t_{ij}} P_{j} P_{j} \varepsilon_{t_{j}}}{I_{\gamma_{i}}} \right|$

obtained combining the various transition probabilities for each nuclear level involved in the coincidence process

 $\epsilon_k. \epsilon_m. \epsilon_i$ obtained by **fitting the experimental data** (spectra analysis)

εt_i botained, for each energy value, using just one experimental A E A

Simplified procedure - 2/2

$$\varepsilon_{\mathbf{t}_j} = \frac{\varepsilon_j}{KR_\sigma E_\gamma}$$

De Felice et al. Applied Radiation and Isotopes 52 (2000)

 $K = R/E_{\gamma}$

A simple proportionality was observed between R and Eγ

 $R = R_{\varepsilon}/R_{\sigma}$

 $R\epsilon$ = peak-to-total efficiency ratio $R\sigma$ = photoelectric-to-total cross section (in germanium) ratio

In each measurement geometry <u>the slope K can be calculated</u> <u>only for one radionuclide (i.e. ¹³⁷Cs at 662 keV)</u>

General criteria applied

Coincidences considered:

 $\gamma - \gamma$ $\gamma - Xk_{\alpha}$ (internal conversion) $\gamma - Xk_{\alpha}$ (electron capture decay – Sm branch)

Coincidences neglected:

triple coincidences X - X X - γ γ - annihilation photon at 511 keV

Selection criteria applied

Some photon selection criteria were applied at ¹⁵²Eu

If γ_i are the photons to which correction must be applied and γ_i are the photons which contribute to that correction:

> <u>Summing-out effect</u>: for each γ_i photon with an emission probability $I\gamma_i$. only coincidences with γ_i having an emission probability $I\gamma_i \ge 10$ % $I\gamma_i$ were considered.

<u>Summing-in effect</u>: only couples γ_k . γ_m where at least one of the two photons has $I\gamma \ge 10$ % $I\gamma_i$ were considered.

Symbols used in the calculation sheet

Semkow formula: Ci = (1 + Σ k,m Ck,m ε k ε m / ε i) (1 - Σ j Ci,j ε tj)

Where:

Fi = $\Sigma(i^* Fi^*)$ (i* is the specific summing-in contribution to the photon i)

Fi^{*} = Σ **k**,**m** C**k**,**m** ε **k** ε **m** / ε **i^{*}**

Ck,m = Ptk,m Pk Pm / $I\gamma i^*$

 $Gi = \Sigma j Ci, j \varepsilon t j$

Results at different source-to-detector distances-1/2

	Cs-134		
E (keV)	1/Ci_10 cm	1/Ci_5 cm	1/Ci_2 cm
242.8	1.0244	1.0656	1.1943
326.5	1.0241	1.1398	1.4770
475.3	1.0223	1.0607	1.1761
563.2	1.0244	1.0659	1.1948
569.3	1.0244	1.0654	1.1938
604.7	1.0148	1.0388	1.1104
795.8	1.0145	1.0390	1.1086
801.9	1.0222	1.0605	1.1754
1038.6	1.0057	1.0130	1.0395
1167.9	0.9910	0.9708	0.9389
1365.2	0.9826	0.9515	0.8921

Results at different source-to-detector distances-2/2

	Eu-152		
E (keV)	1/Ci_10 cm	1/Ci_5 cm	1/Ci_2 cm
121.8	1.0230	1.0722	1.2141
244.7	1.0285	1.0910	1.2779
344.3	1.0089	1.0231	1.0638
411.1	1.0196	1.0549	1.1532
444.0	1.0273	1.0865	1.2589
564.0	1.0546	1.1844	1.6433
688.7	1.0207	1.0659	1.2000
778.9	1.0117	1.0324	1.0868
867.4	1.0331	1.1066	1.3346
964.1	1.0221	1.0698	1.2099
1085.8	1.0020	1.0061	1.0152
1089.7	1.0101	1.0277	1.0745
1112.1	1.0136	1.0428	1.1255
1212.9	1.0256	1.0813	1.2412
	1.0117	1.0326	1.0873
1408.0	1.0166	1.0519	1.1523

References

 M. Korun and R. Martini Coincidence summing in gamma and X-ray spectrometry Nucl. Instrum. and Methods in Phys. Res. A 325 (1993) 478-484
T.M. Semkow. G. Mehmood. P. Parekh. M. Virgil Coincidence summing in gamma-ray spectroscopy Nucl. Instrum. and Methods in Phys. Res. A 290 (1990) 437-444

[3] R.G. Helmer. R.J. Gehrke *Calculation of coincidence summing corrections for a specific small soil sample geometry* Proceedings of the symposium on advances in alpha-. beta- and Gamma-Spectrometry. St Petersburg. Russia. Sept. 1996

[4] Pierino De Felice. Paola Angelini. Aldo Fazio and Roberto Biagini Fast procedures for coincidence-summing correction in γ-ray spectrometry Applied Radiation and Isotopes 52 (2000) 745-752

[5] Pierino De Felice. Paola Angelini. Aldo Fazio and Marco Capogni A national campaign for coincidence-summing correction in γ-ray spectrometry Applied Radiation and Isotopes 56 (2002) 117-123

Cs 134 decay scheme

Eu 152 (Sm) decay scheme – 1/2

Eu 152 (Sm) decay scheme – 2/2

Eu 152 (Gd) decay scheme

BNM-LNHB/CEA - Table de Radionucléides

152 Eu 63 89

BNM-LNHB/CEA - Table de Radionucléides

^{3⁻; 0} 13,522 (16) a Eu β⁻

152 Eu

63 89

