

Experiences with accreditation of variable-geometry gamma-spectrometry

19. september 2023 Asser Nyander Poulsen Specialkonsulent

Dealing wit irregular geometries and unknown sample compositions

,	Periodic Table of the Elements																
IA					Margin Kasakara		10										VIIIA
Ĥ					Atomic Number		ŇI ←	Symbol									He
Hydrogen 1.008 1	2 IIA				Name	Alun	ninium					13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	Helium 4.0026 2
· · :	Po.	Electrons per shell → 28.982 ← Atomic Reight								5 D	ć	, NI	'n	È	No		
Lithium	Beryllium	C State of matter (color of name) Subcategory in the metal-metallioid-nonmetal trend (color of background)							Boron	Carbon	Nitrogen	Grypen	Rusrine	Neon			
21	12	CAS LIQUO SOLID UNKNOWN Alkati metals Lanthanides Metallaids Unknown chemical properties Alkaline earth metals Actinides Reactive nonmetals							13	24	25	24	23	28			
Na	Mg				ransition metals	Post-tra	insition metals	Noble gases				Al	Si	Ρ	S	Cl	Ar
22.96926928 2-5-1	Magnesium 24.305 2.8.2	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	Aluminium 26.982 2-8-3	54005 28.085 28.4	Phosphorus 30,974 2-8-5	Sulfur 32.66 2.84	25.45 28-7	28.948 2.8-8
ĸ	Ca	Sr	Ti	Ň	Čr	Mn	F۹	Co	Ni	Ĉu	3n	Ga	Ge	Δs	Še	Br	ĸr
Potessium 21,2103	Calcium 40078	Scandium 44.955908	Titanium 47.867	Vanadium 50.9415	Chromium 51,9961	Manganese 54,938044	Iren 55.845	Cobalt 54.933	Nickel 58.493	Copper 63.546	Zinc 45.38	Gattium 41723	Germanium 72,430	Arsenic 34,922	Selenium 78.971	Bromine 71.904	Krypton 83.798
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Tellarium	latine	Xe
85.4678 24/8-61	87.42 24/842	88.90584 24-16-52	91.224 2-8-85-2	92,90637 24-8-10-1	95,95 24-8-0-1	(98) 24-18-0-2	101.07 2-8-18-15-1	102.91 2-8-18-16-1	106.42 2-5-16-18	107.87 2-8-18-18-1	112.41 2-8-18-2	114.82 2-8-18-33	18.31 24-18-18-4	121.76	127.60 2-8-18-84	125.90	131.29 2-5-18-18-6
Ĉs	Ba	57-71	Η̈́f	Ta	Ŵ	Re	Ôs	ľr	Pt	Âu	Η̈́α	Ťι	Рb	Bi	Po	Åt	Rn
Coesium 132,90545196 2,0,10,10,01	Barium 137,527	Lanthanides	Hafnium 178.49 24-8-32-8-2	Tantalum 180,94788 2-0-18-32-18-2	Tungsten 183.84 2-6-16-32-12-2	Rhenium 186.21 2-6-18-20-10-2	Osmium 190.23 2-8-8-32-8-2	Iridium 192.22 24-8-32-8-2	Platinum 195.08 24-18-32-17-1	Gold 194.97 2-8-8-32-98-1	Mercury 200.59 2-8-8-32-8-2	Thallium 204.38 2-5-19-32-18-3	Lead 207.2 2-0-10-32-10-4	Bismuth 208.98 2-8-8-32-8-5	Potonium (209) 2-5-18-32-18-6	Astatine (210) 2-5-15-32-18-7	Radon (222) 2-8-19-32-19-4
87	88		104 D.f	105	106	107	108	109	110	m D	112	113	114	115	116	117	118
Francium	Radium	89-103 Actinides	Ritherlandium	Dubnium	Seaborpium	Bohrium	HS Hassium	Mit	US Darmstadtium	Rg	Copernicium	Nhonium	Flerovium	MC	LV	IS Tennessine	Ug
(220) 2-8-18-12-18-8-1	(226) 24/8-32-84-2		(267) 24-16-20-32-10-2	(264) 2-8-18-32-32-15-2	(369) 24-96-32-32-52-22	(270) 24-10-32-52-52-52	(277) 24-8-35-35-8-2	(278) 24-8-22-22-8-2	24-10-32-32-0-1	(282) 24-95-32-32-0-2	(285) 24-8-32-32-8-2	(286) 24-10-22-32-10-3	(289) 2-5-10-32-32-10-4	(293) 24-18-32-32-18-5	(293) 24-8-32-32-84	(294) 24-10-22-32-10-7	(294) 24-18-32-32-18-8
		57	58	59	60	61	62	63	64	65	65	67	<u> </u>	69	20	n	
		La	Ce	Pr Prasedymium	Nd Neofymium	Promethium	Sm	Eu	Gd	Terbium	Dy	HO	Er	Im	Yb	Lu	
		108.M 24-8-8-12	14012 24/8/9/52	548.91 24-10-25-6-2	144.24 24/8-22-62	(145) 2418-224-2	150.34 2-0-10-10-2	151.96 2-0-10-25-0-2	157.25 24-8-25-9-2	54.93 24/8/27-62	162.50 24/8/28/8/2	164.93 24/8-2942	107.25 24-8-3042	568.97 24/8/214/2	172.05 2410.3242	176.97 24-18-32+2	
		Åc	Th	Pa	Ű	Ňp	Pu	Åm	Cm	Bk	Ĉf	Ës	Fm	Md	No	Lr	
		Actinium (227)	Thorium 222.04	Protactinium 23104	Uranium 238.03	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (250	Einsteinium (252)	Fermium (257)	Mendelevium (250)	Nobelium (299)	Lawrendium (244)	

Terms

The client must agree on the proposed geometry model and assumed elemental composition.

The client must accept errors caused by deviations between the real sample and the used geometry model (LabSOCS), regarding:

- Dimensions and form (detailed structure)
- Distribution of radioactivity
- Self-absorption (elemental composition)

This was accepted by the accreditation authorities, **but**:

The lab must assist in trying to identify/justify the material composition and must provide guidance on magnitude of potential errors.

^{side 3} Therefore, sensitivity analysis was performed.

Energy-dependent sensitivity analysis (LabSOCS)

Assumed e.g.:

SiO2 (quartz) 10x10 cm cylinder

What if:

BaSO4 (barite)

10x8 cm cylinder

↓ .GIS file Eff(E)

 A_{o} (E)= 1/Eff

.GIS file

.GIS file

A_i (E)= ? A_i (E)= ?

Sample height

Water. CoAx60 H1CVE Diam 10cm. Constant mass. Normalized activity if true fill height is

Sample diameter

Water. CoAx60 H1CVE Height 10cm. Constant mass. Normalized activity if true diameter is

Source-detector distance

Water. CoAx60 H1CVE 10x10cm. Normalized activity if true detector distance is

Absorber thickness

Water, CoAx60 H1CVE 10X10cm. Normalized activity if true absorber thickness is

plexiglas

Sample density

Water. CoAx60 H1CVE 10x10cm. Constant volume. Normalized activity if true density is

Minerals

"Tugtupit" 2,35 g/ml

Density: 2-5 g/ml

"Apatit" 2,8 g/ml

Minerals. CoAx60 H1CVE 10x10cm. Constant density (2.6g/ml). Normalized activity if true material is

Polymers

ΡE (polyethylene) 0,93 g/ml

PΡ (polypropylene) 0,91 g/ml

ΡU

Rubber 1,34 g/ml (+ sulphur)

Plastics, CoAx60 H1CVE 10x10cm. Constant density (1 g/ml). Normalized activity if true material is

+ Key lines

Metals and alloys

Steel / iron ca. 8 g/ml

Stainless ca. 8 g/ml

Brass ca. 8,5 g/ml

Zinc 7,1 g/ml

(Surface only?)

Iron_Steel. CoAx60 H1CVE 10x10 cm. Constant density (7.8g/ml). Normalized activity if true material is Uran

+ Key line energies

Light-metal alloys

Carbon 2,26 g/ml

Aluminium 2,7 g/ml (evt. + Zn, Cu, Mg, Fe, Cr)

Magnesium 1,7 g/ml

4,5 g/ml

Light metals. CoAx60 H1CVE 10x10 cm. Constant density (2.8g/ml). Normalized activity if true material is

Conclusions

- Material-knowledge is important.
- Light elements can be excluded based on observed density (porosity is possible compression is not).
- Variation in sample dimensions and density typically leads to errors that are within LabSOCS default uncertainty.
- Unknown presence of heavy elements in e.g. minerals, lightmetal alloys and plastics can lead to singnificant <u>under-</u> <u>reporting</u> of activity – primarily for E < 200 keV (e.g. Pb-210).
- Variations in steel-alloys have little or insignificant effect.

Documentation

ith, r^3tpit4/3): 5.4.2,2 2044 44 cm^3	
	Vol (b*h*d, r^2*
70.552/44= 1,603	Beregnet densit
mm Materiale Densitet (g/ml) Evt. vægt (g), Rel. Conc.	d X.X
0 hone	1,1
50 hone	1.2
40 hoze	1.3
0 none	2-1
22 Feldspar 1,603	3.1
3.1 plexials 1,2	4-1
35.1	5.1

Geometri-mo	del (.GIS udtra	æk).									
Template:	'SIMPLIFIED_E	BOX'		Kontur:	na						
.Geo file:	'c	:\genie2k\iso	cs\data\geometry\laboratory\simplified_box\gec-1598_h1sbx.geo								
Detektor: B08006		Description:		GEC-1598	H1SBX						
Ambient pres.	760	Amb. temp.:	mb. temp.: 22		(%):	30					
MC Conv. (%)	: 1	L. units: mm		Density un	iits:	g/cu.c	(cu.c = ml)				
D	.1	.2	.3	.4	Material	Density	Rel. C.				
1.	na	50	40	na	na	na					
2.	na	na	na	na	na	na	na				
3.	22	na	na	na	FELDSPAR	1,603	1				
4.	na				na	na	na				
Abs1	3,1				PLEXIGLS	1,2					
Abs2	na				na	na					
Source-Det.	35,1										
X-Offset	na										
Sammensæt	ning (mu01_8ll	b.txt udtræk)									
Material 1:	na	na									
Material 2:	na	na									
Material 3:	FELDSPAR	KALSI308:33.00%_NAALSI308:33.00%_CAAL2SI208:34.00%									
Material 4:	na	na									
Absorb. 1:	PLEXIGLS	C5H8O2:100.00%									
Absorb. 2: na na		na	a								
Rapport ID: GEC-1598-K1-Tugtupit [18-09-2023 15:43:12]											

Dimensions

