
Improving the accuracy of uncertainty calculations with Genie 4.0

Eric TISCHENBACH Application support manager Europe, Africa, Middle East & Asia

28 September 2023 Helsinki

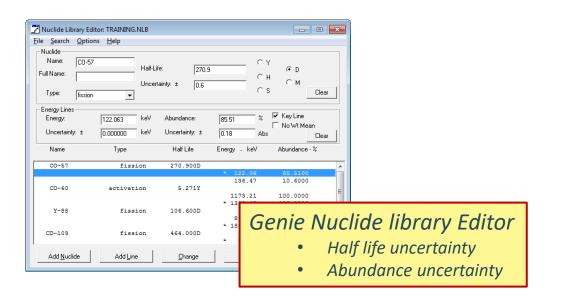
Genie 4.0 Introduction

Genie 2000 / Genie 4.0

Uncertainty management

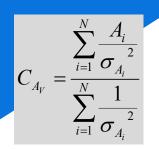
- Efficiency calibration Uncertainty
 - Certificate used
 - Rate uncertainty •

(combine Abundance uncertainty and Nuclide Activity Uncertainty)


Net peak area

Quantity: 1 unit(s) Assay date: 1/1/2011 at 120000 Disjinal Certificate Bit	
Driginal Centricate: Etric Unignal Centricate: Image: CD-103 HalkLife: 463.9 C Y C Image: State State Gardine Gardine Gardine C <th></th>	
Original Centricate Entre Line Nuclide: CD-109 HalkLife: 463.9 C Y C Energy: 98.037 key Uncertainly: +/- 0.1 C S Add Charge Delete Clear Delete Clear Nuclide Energy (keV) Rate 2Uncert HalkLife: C - 139 C - 159 122.0 0.63 265.0000 4.1000 272.400 272.401 C - 159 122.0 0.63 2.9000 4.1000 2.9000 272.401 C - 159 126.635 365.0000 4.0000 272.401 2.900 2.900 2.900 2.900 2.9000	I PM
Image Image <th< th=""><th></th></th<>	
Nuclide CD-109 Hal-Lite 4633 C Y C Energy 88.037 keV Uncertainty +/- 0.1 C H C Energy 980.037 keV Uncertainty +/- 0.1 C H C Hot 4930000 geo daps per unit quantity F E C H C Add Charge Delete Delete Delet Delet C C S C C S C C C S C C S C C C S C C H C C C C S C C S C	owse
Induce CD/L03 marticle ws.3 CH OI C Emission Rate: 4933.0000 gps or aps per unit quantity F OI C C Emission Rate: 4933.0000 gps or aps per unit quantity F Use for Cably/NIT ? Add Change Delete Clear C Nucide Emergy (NeV) Rate 3.0000 4.3000 222.401 C0=57 122.663 2563.0000 4.3000 222.401 277.701 EST=133 156.583 505.0000 3.0000 115.00 22.001 130.001 127.701 EST=133 156.583 505.0000 4.0000 130.001 127.701 158.713 30.001 177.701 158.713 30.001 177.701 158.713 30.001 177.701 158.713 30.001 177.701 158.713 30.001 177.701 177.711 177.711 177.711 177.711 177.711 177.711 177.711 177.711 177.711 177.711 177.711 <th></th>	
Energy 88.037 keV Uncertainly +/- U1 C Emission Rate: 4933.0000 gps or aps per unit quantity Rate Uncertainly: +/- 430000 gps or aps per unit quantity Rate Uncertainly: +/- 430000 gp Delete Clear Nuclide Energy (keV) Rate 2Uncert HalfLife CD-57 222.055 2555.0000 4.0000 272.401 CD-57 227.518 5655.0000 3.9000 137.701 RH-203 279.188 5101.0000 3.9000 146.621 SN+13 931.688 5205.0000 3.9000 146.621 CS-137 165.635 3565.0000 3.9000 166.621 SN+13 931.688 5205.0000 3.9000 166.621 CS-137 161.639 2526.0000 3.9000 166.621 CP-60 177.212 124.303 3.9000 106.652 CO-60 177.3120 6505.0000 4.0000 5.27	M I
Charte Uncertainty: +/- 4 5000 % Use for Cabb/NIT ? Add Charge Delete Clear Nucide Energy (lev?) Rate XUncent HalkLife CD-50 58.007 4539.0000 4.0000 727.401 CD-19 165.655 5665.0000 3.9000 137.701 HP-203 279.188 5101.0000 3.9000 146.201 SN-113 991.668 5205.0000 3.9000 16.001 CS-137 661.639 2526.0000 3.9000 16.001 CS-149 161.621 12.430 3.9000 16.621 CS-137 1261.633 5205.0000 3.9000 16.621 CS-137 1261.633 500.0000 106.621 17.71 Y=88 950.021 12.430 3.9000 106.621 CO-60 173.210 6309.0000 5.271 12.430 3.9000 106.621	m
Add Charge Delete Clear Nucide Energy (keV) Rate 2Uncert Half-Life CD-57 122, 065 555, 0000 4, 1000 127, 401 CD-57 122, 065 5658, 0000 3, 1000 137, 701 CF-139 155, 853 3658, 0000 3, 1000 137, 701 HF-203 279, 188 8101, 0000 3, 1000 137, 701 SN-133 391, 688 5205, 0000 3, 5000 16, 621 CS-137 661, 689 5265, 0000 3, 5000 10, 600 Y=88 998, 021 12430 3, 5000 106, 621 CO-60 173, 210 6503, 0000 4, 0000 5, 277	
Add Charge Delete Clear Nucide Energy (keV) Rate XUncett Hal-Life CD=19 43.9.35 45.95.000 4.9000 155.952 CD=19 122.055 2558.0000 4.9000 137.901 CT=139 165.853 3655.0000 3.9000 137.701 HF=203 279.188 B101.0000 3.9000 146.621 SN=13 391.688 5205.0000 3.9000 160.000 CC=137 661.639 32563.0000 4.0000 30.000 Y=88 998.021 12430 3.9000 106.621 CO=60 177.210 6505.0000 4.0000 5.27	
Nuclide Energy (keV) False 2Urcert Helf-Life C0-50 63.037 4999.0000 4.000 427.40 C0-57 122.063 258.000 4.000 272.40 C1-130 156.153 565.000 3.000 17.70 CF-131 156.153 505.000 3.000 115.00 CF-137 154.638 505.000 3.000 115.00 CF-137 154.163 5265.0000 3.000 155.00 CF-137 121.263.000 4.0000 3.000 155.00 CF-137 121.263.000 4.0000 3.000 155.00 CF-137 121.063.000 4.0000 5.27 121.17	
CD-109 48.037 4993.0000 4.5000 465.90 CD-57 122.063 2563.0000 4.1000 272.401 CT-139 165.853 3664.0000 3.0000 177.701 CT-137 165.853 3654.0000 3.0000 146.600 CT-137 165.853 3624.0000 3.0000 146.600 CT-137 166.1638 3263.0000 4.0000 30.000 CT-137 166.1638 3263.0000 4.0000 30.000 Y=88 198.021 12430 3.0000 106.62 CO-60 173.210 6303.0000 4.0000 5.27	
CD-57 122 058 2563 0000 4 1000 272.400 CZ=139 165 585 3656.0000 3.900 137.70 HG=203 279.188 8101.0000 3.900 146.62 SN=113 391.688 5205.0000 3.9000 115.00 CS=137 661.688 5205.0000 4.0000 30.000 Y=88 998.021 12430 3.9000 106.62 CO-60 1173.110 633.0000 4.0000 3.27	
CE-139 165.853 5665.0000 3.3000 137.70 HR-203 279.188 8101.0000 3.9000 46.62 SN-113 391.668 5205.0000 3.9000 116.00 CS-137 661.639 5205.0000 4.0000 30.00 Y=88 995.021 12430 3.9000 106.62 CO-60 177.210 6505.0000 4.0000 5.27	
HE-203 279.188 E101.0000 3.9000 4.6.62 SM-113 391.688 5205.0000 3.9000 115.00 CS-137 661.639 3252.0000 4.0000 30.00 Y-88 998.021 12430 3.9000 10.6.67 CO-60 1173.210 6530.0000 4.0000 5.27	
SN-113 391.688 5205.000 3.900 115.00 CE-137 661.688 5265.000 4.0000 50.00 Y-88 695.021 12430 3.9000 106.66 CO-60 1173.210 6530.0000 4.0000 5.27	
CS-137 661.638 3263.0000 4.0000 30.00 Y-B8 996.021 12430 3.9000 106.66 CO-60 1173.210 6303.0000 4.0000 5.27	
Y-88 898.021 12430 3.9000 106.66 CO-60 1173.210 6303.0000 4.0000 5.27	
CO-60 1173.210 6303.0000 4.0000 5.27	
106.66	
106.66	0
	-
Conio Cortificato Editor	
Genie Certificate Editor	
Activity uncertainty for k=1	
V_{CT}	

Activity Uncertainty

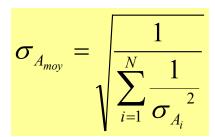

- Net peak area •
- Efficiency
- Energy line Abundance
- Nuclide Half life •
- Sample quantity
- Random (facultative) ۰
- Systematic (facultative) ۲

Genie 2000 /Genie 4.0

Uncertainty management

Activity

Formula used for Weighted mean Activity Multi-line nuclide


• The calculation of the uncertainty on the activity is given by the following formula

$$\sigma_{C} = C \cdot \sqrt{\left(\frac{\sigma_{R}}{100}\right)^{2} + \left(\frac{\sigma_{S}}{S}\right)^{2} + \left(\frac{\sigma_{V}}{V}\right)^{2} + \left(\frac{\sigma_{\varepsilon}}{\varepsilon}\right)^{2} + \left(\frac{\sigma_{y}}{y}\right)^{2} + \left(\frac{\sigma_{K}}{K}\right)^{2}}$$

Where
$$C = \frac{S}{V.\varepsilon.y.T_1.K_C.K_W}$$

$$\sigma_R$$
: Random uncertainty

- σ_s : Net peak area uncertainty
- σ_V : Sample quantity uncertainty
- σ_{ε} : Efficiency uncertainty
- σ_y : peak Abundance Uncertainty
- $\sigma_{\scriptscriptstyle K}\,$: Nuclide Half life Uncertainty
- The uncertainty calculated for the nuclide average activity will be given by the formula

Genie 2000 / Genie 4.0

Uncertainty management

ISO 11929 MDA

ISO11929 MDA formula, where measurement Uncertainty

is part of MDA calculation

ISO11929 formula for decision threshold

$$c_A^* = k_{1-\alpha} \cdot \frac{w}{t_g} \sqrt{n_{b, E} + u^2_{(nb, E)}}$$

ISO11929 MDA formula

 $c_{A}^{\#} = \frac{2.c_{A}^{*} + (k^{2}.w) / t_{g}}{1 - k^{2}.u_{rel}^{2}(w)}$

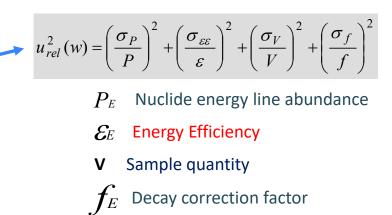
Detection Limit (MDA)

Measurement uncertainty

Decision thresold

 $c_A^{\#}$

 c^*_A


 $u_{rel}^2(w)$

$$w = \frac{1}{P_{E}.\varepsilon_{E}.V.f_{E}}$$

Where:

*	
\mathcal{C}_A	Decision threshold
k_{1-lpha}	Confidence factor
	1.645 for 95%, 1.96 for 97.5%
$n_{b, E}$	Integral of the region
$u^{2}_{(n_{b}, E)}$	Integral Uncertainty
t_{g}	Active count time

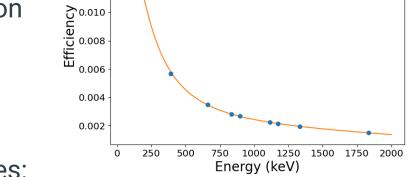
Where:

Correlations in Calibration Standards

∫____ Imp Cal

Support for Correlations in Calibration Standards

Automation Improvements w Python Scripting



More Value: ISOCS Genie-Fieldpro, QA

Electronic Download and Licensing

- The uncertainty in an efficiency calibration is propagated to the uncertainty of the unknown sample activity.
- Uncertainty propagation is different for correlated values than independent values:

0.016

0.014

0.012

Efficiency calibration

Fit Tit Data

- Generally additional independent measurements improve the knowledge of the detector efficiency response, driving down the final activity uncertainty.
- Additional fully-correlated measurements *do not* improve the knowledge of the detector efficiency response, and the final activity uncertainty may be higher than with values treated independently.
- Uncertainty propagation and management is a topic of focus by regulators and the scientific community

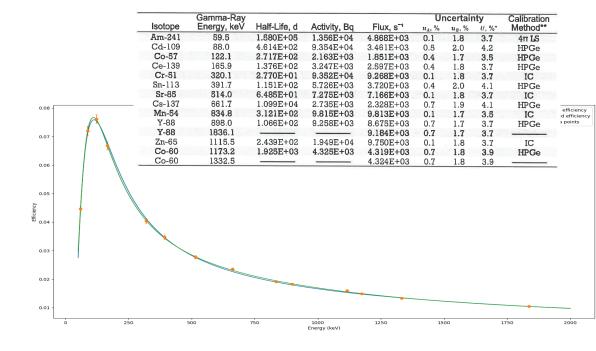
Correlations in Calibration Standards

Improved FW/HM

Calibration Optio

Support for Correlations in Calibration Standards

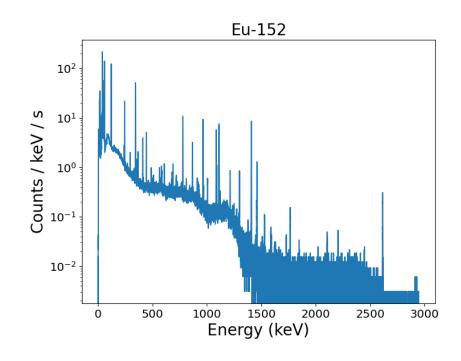
mprovements wi Python Scripting

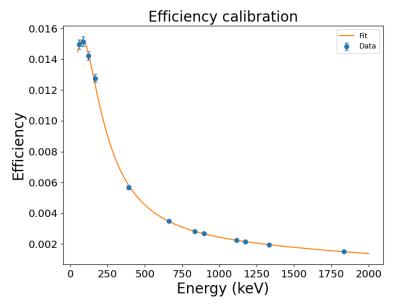

More Value: ISOCS, Genie-Fieldpro, QA/0

Electronic Download and Licensing

Definitions:

- Two vales are "correlated" if there is a relationship between the measurements
- Two values are independent if there is no information gained

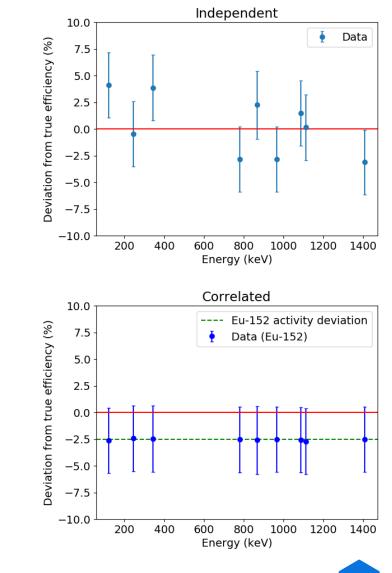

about one measurement from the other measurement


In our application:

- In Gamma Spectroscopy and Efficiency Calibrations, the item being "measured" is the true efficiency of the detector at various energies.
- The measurement values are the calculated "efficiency triplets" from the emission lines of the calibration standard.

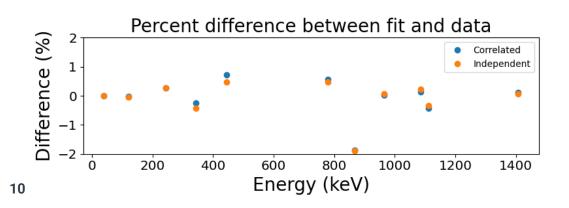
Genie 4.0 Correlation improvement Introduction

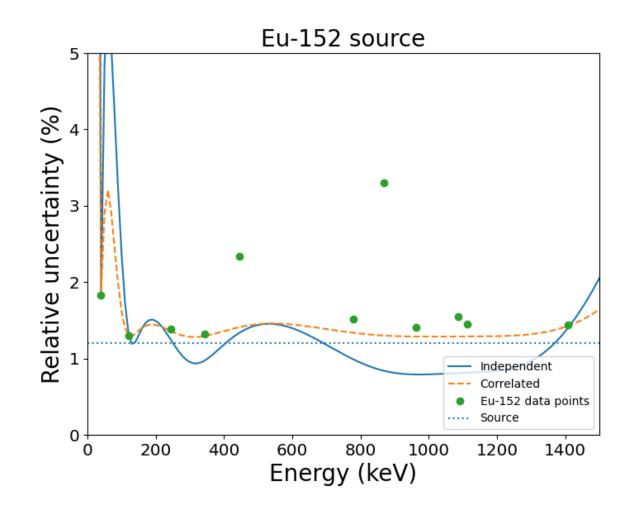
- For high precision gamma spectrometry, the uncertainty from efficiency calibration is often dominating
- Quantities in gamma spectrometry can be determined using multiple measurements
 - Efficiency as a function of Energy, weighted mean activity of radionuclides
- When these measurements are independent the uncertainty is reduced when more measurements are added
- This leads to uncertainties from the efficiency fit to be lower than the uncertainty of the individual points unless correlations between data points are accounted for



Genie 4.0 Correlation

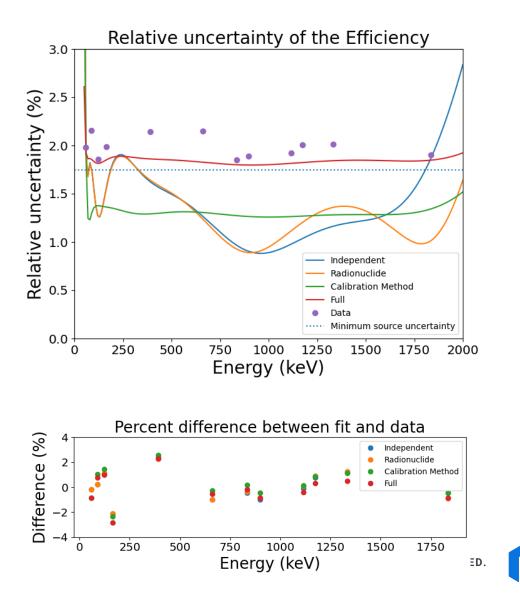
- Correlations are relations in data that varies together in a way not expected from chance alone
- The emission rate for lines from a multiline radionuclide
- Changes the least squares fit


$$\chi^{2} = \sum_{i=1}^{n} \frac{(y_{i} - f(x))^{2}}{\sigma_{y_{i}}^{2}} \to \chi^{2} = (y - f(x))^{T} V^{-1} (y - f(x))$$

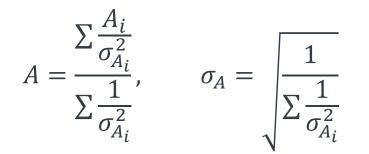

- This has consequences for efficiency calibration, weighted mean activity and interference correction of activities*
- But also for MDA ISO11929 calculation

Example 1 - Single radionuclide calibration

- Eu-152 calibration
 - Point source at 30 cm
 - 20% rel eff p-type detector
 - Multiple emission lines with correlation from the radionuclide activity
- Activity has a relative uncertainty of 3.1% at 99% CL



Example 2 - Mixed gamma source


- Multi-radionuclide calibration source
- The level of correlation depends on the assumptions
 - All points independent
 - · Points from same radionuclide correlated
 - Points using the same calibration method correlated
 - All points correlated
- For the most conservative assumption the relative uncertainty will be slightly above the lowest relative uncertainty from the certificate.

	Gamma-Ray				Ur	certair	nty	Calibration
Isotope	Energy, keV	Half-Life, d	Activity, Bq	Flux, s⁻¹	$u_A, \%$	$u_B, \%$	U, %*	Method**
Am-241	59.5	1.580E+05	1.358E+04	4.875E+03	0.1	1.8	3.7	4π LS
Cd-109	88.0	4.614E+02	9.367E+04	3.466E+03	0.5	2.0	4.2	HPGe
Co-57	122.1	2.717E+02	2.165E+03	1.854E+03	0.4	1.7	3.5	HPGe
Ce-139	165.9	1.376E+02	3.251E+03	2.601E+03	0.4	1.8	3.7	HPGe
Cr-51	320.1	2.770E+01	9.365E+04	9.281E+03	0.1	1.8	3.7	IC
Sn-113	391.7	1.151E+02	5.733E+03	3.725E+03	0.4	2.0	4.1	HPGe
Sr-85	514.0	6.485E+01	7.285E+03	7.175E+03	0.1	1.8	3.7	IC
Cs-137	661.7	1.099E+04	2.739E+03	2.331E+03	0.7	1.9	4.1	HPGe
Mn-54	834.8	3.121E+02	9.828E+03	9.826E+03	0.1	1.7	3.5	IC
Y-88	898.0	1.066E+02	9.270E+03	8.686E+03	0.7	1.7	3.7	HPGe
Y-88	1836.1			9.196E+03	0.7	1.7	3.7	-
Zn-65	1115.5	2.439E+02	1.951E+04	9.763E+03	0.1	1.8	3.7	IC
Co-60	1173.2	1.925E+03	4.331E+03	4.324E+03	0.7	1.8	3.9	HPGe
Co-60	1332.5	<u> </u>		4.330E+03	0.7	1.8	3.9	

Weighted mean activity

• Independent weighted mean

• New Correlated weighted mean algo

$$A = \frac{\sum_{i,j} V_{ij}^{-1} A_j}{\sum_{i,j} V_{ij}^{-1}}, \qquad \sigma_A = \sqrt{\frac{1}{\sum_{i,j} V_{ij}^{-1}}}$$

From covariance matrix
$$V = \begin{pmatrix} \frac{\sigma_{\varepsilon_1}^2}{\varepsilon_1^2} & \dots & V_{1n} \\ \dots & \dots & \dots \\ V_{n1} & \dots & \frac{\sigma_{\varepsilon_n}^2}{\varepsilon_n^2} \end{pmatrix}$$

Energy (keV)	Eff:Corr WtM:Corr	Eff:Corr WtM:Indep	Eff:Indep WtM:Corr	Eff:Indep WtM:Indep
121.8	1.39 %	1.39 %	1.39 %	1.39 %
244.7	1.52 %	1.52 %	1.42 %	1.42 %
344.3	1.41 %	1.41 %	1.12 %	1.12 %
444.0	2.47 %	2.47 %	2.43 %	2.43 %
778.9	1.62 %	1.62 %	1.35 %	1.35 %
867.4	3.33 %	3.33 %	3.18 %	3.18 %
964.1	1.48 %	1.48 %	1.08 %	1.08 %
1085.9	1.62 %	1.62 %	1.27 %	1.27 %
1112.1	1.52 %	1.52 %	1.15 %	1.15 %
1408.0	1.63 %	1.63 %	1.61 %	1.61 %
Wt Mean	1.25 %	0.52 %	0.55 %	0.44 %

Relative uncertainty of Eu-152 source 1.20 %

Correlations are supported in Genie 4.0

• Primary User Focus: Updated

Certificate File Editor (see right).

This is where the user defines how the calibration source standard emission lines are correlated.

• Transparent for the user

Genie algorithms updated for efficiency calibration fits and nuclide identification with interference correction engine (now called w/ Correlations") "NID

🖉 Certificat	te File Editor - N	BSNEW.CTF							_		>
ile Option	s Help										
Title:	NBS Standard										
Quantity:	1	unit(s)	Assay date:	9/ 1/1978			00:00 AM	-			
				1				-			
Certificate In	nage:									Browse	1
C-166-11-11	n a artainte Canalal	tion: 🔍 F		Nuclide	C None	C Custo	n Dofin	e Custom Corre	Jation		
Lertificate U	ncertainty Correla	uon: 🤊 r	uii V	Nuclide	 None 		Denn	e custom cone	siation		
luclide											1
Name:		CD-109	ł	Half-life:		462.9 🖸				Add	
Activity:		14247.1 Ba	1	Uncertainty:		2 0					1
-		3.0227	Ì	ornoontainty.	,	- ° °	S			Change	
% Uncertaint	ty: I	3.0227									
ine											
										Delete	
	00.0241	half Intern	-11-11		2.01	Enciencies I	Data (atturitt):	E14	2202	Delete	
nergy:	88.0341	keV Inten	sity:		3.61	Emissin F	Rate (s=1 unit=1):	514	.3203		
Energy: 🔽 Use for C	1		sity: rtainty:		3.61	Emissin F % Uncert			1.3203	Delete Clear	
	1										
Use for C	1			Intensity (per 100 decays)							e
✓ Use for C Nuclide CD-109	alib/Init	Unce %Uncert 3.023	rtainty:	100 decays) 3.6100	0.1 Uncertainty	% Uncert Rate (s⁻¹ unit⁻¹) 514.3203	ainty: %Uncert 4.1000	4 Half-life	.1000	Clear Current Rate (s 1 unit 1) 1.95e-08	
✓ Use for C Nuclide CD-109 CO-57	alib/Init Activity (Bq) 14247.100 1068.310	Unce %Uncert <u>3.023</u> 1.700	rtainty: Energy (keV) 88.034 122.061	100 decays) 3.6100 85.9000	0.1 Uncertainty (per 100) 0.1000 1.2000	% Uncert Rate (s ⁻¹ unit ⁻¹) 514.3203 917.6783	ainty: %Uncert <u>4.1000</u> 2.2000	Half-life	.1000 Uncertainty 2.0000 0.0500	Clear Current Rate (s 1 unit 1) 1.95e-08 1.65e-15	
Vuclide	alib/Init Activity (Bq) 14247.100 1068.310 690.209	Unce %Uncert 3.023 1.700 4.000	rtainty: Energy (keV) 88.034 122.061 165.853	100 decays) 3.6100 85.9000 79.8860	0.1 Uncertainty (per 100) 0.1000 1.2000 0.0150	% Uncert Rate (s ⁻¹ unit ⁻¹) 514.3203 917.6783 551.3803	ainty: %Uncert 4.1000 2.2000 4.0000	Half-life 462.90 D 271.80 D 137.64 D	Uncertainty	Clear Current Rate (s 1 unit 1) 1.95e-08 1.65e-15 4.98e-33	
Use for C Nuclide CD-109 CO-57 CE-139 HG-203	alib/Init Activity (Bq) 14247.100 1068.310 690.209 2134.180	Unce %Uncert 3.023 1.700 4.000 2.495	rtainty: Energy (keV) 88.034 122.061 165.853 279.197	100 decays) 3.6100 85.9000 79.8860 81.4600	0.1 Uncertainty (per 100) 0.1000 1.2000 0.0150 0.1300	& Uncert Rate (s ⁻¹ unit ⁻¹) 514.3203 917.6783 551.3803 1738.5029	*ainty: %Uncert 4.1000 2.2000 4.0000 2.5000	Half-life 462.90 D 271.80 D 137.64 D 46.61 D	Uncertainty	Clear Current Rate (s ⁻¹ unit ¹) 1.65e-15 4.98e-33 5.74e-101	
✓ Use for C Nuclide CD-109 CO-57 CE-139 HG-203 SN-113	alib/Init Activity (Bq) 14247.100 1068.310 690.209 2134.180 2580.310	Uncert %Uncert 1.700 4.000 2.495 3.643	rtainty: Energy (keV) 88.034 122.061 165.853 279.197 391.688	100 decays) 3.6100 85.9000 79.8860 81.4600 64.0000	0.1 Uncertainty (per 100) 0.12000 0.0150 0.1300 2.0000	% Uncert Rate (s ⁻¹ unit ⁻¹) 917.6783 551.3803 1738.5029 1651.3986	Ainty: XUncert 4.1000 2.2000 4.0000 2.5000 4.8000	Half-life 462.90 D 271.80 D 137.64 D 46.61 D 115.09 D	Uncertainty	Clear Current Rate (s*1 unit*1) 1.95e-08 1.65e-15 4.98e-33 5.74e-101 2.03e-39	
✓ Use for C Nuclide CD-109 CO-57 CE-139 HG-203	alib/Init Activity (Bq) 14247.100 1068.310 690.209 2134.180	Unce %Uncert 3.023 1.700 4.000 2.495	rtainty: Energy (keV) 88.034 122.061 165.853 279.197	100 decays) 3.6100 85.9000 79.8860 81.4600	0.1 Uncertainty (per 100) 0.1000 1.2000 0.0150 0.1300	& Uncert Rate (s ⁻¹ unit ⁻¹) 514.3203 917.6783 551.3803 1738.5029	*ainty: %Uncert 4.1000 2.2000 4.0000 2.5000	Half-life 462.90 D 271.80 D 137.64 D 46.61 D	Uncertainty	Clear Current Rate (s ⁻¹ unit ¹) 1.65e-15 4.98e-33 5.74e-101	

Conclusion

- Taking correlations into account for efficiency calibration and activity calculations in gamma spectrometry can increase the uncertainty of the radionuclide activities when the efficiency data points are correlated.
- Uncertainties in the independent variable, intensities, are necessary when performing interference correction when the relative uncertainty in the decay data is comparable or large compared to other uncertainties.
- Nuclide Activity Uncertainty Results <u>may</u> increase by 1-3%

Included in Genie 4.0

Genie 4.0 webinar presentation available on our website

Latest in Gamma Spectroscopy: New Genie[™] 4.0 Software (on24.com)

Thank you

Special thank to our scientist team Henrik Persson, Troy Anderson, John M Kirkpatrick, Kara Phillips