Detector development at the Detector Laboratory of HIP

Erik Brücken and Timo Hildén

Semiconductor detector development at HIP

- Motivation
 - Keeping up the capability of manufacturing sensors.
 - Offering academic value to students
- Facilities
 - Local laboratory
 - Clean room premises
 - Interconnection tools: semiautomatic wirebonders, flip-chip bonder, reflow oven
 - Characterization tools: probestations, TCT, X-ray set-up, climate chamber, ...
 - Simulation tools: Sentaurus TCAD, ...
 - Access to Micronova
 - Other university groups (Accelerator lab, ALD lab, ...)
 - Collaborators (Okmetic, VTT, DT, STUK)

Radiation hard pixel detector

- Designs optimized for particle physics experiments.
- Using low-oxygen Magnetic Czochralski silicon from Okmetic.
- A comparison of radiation hardness between MCz and standard Float-zone silicon diodes.
- Studying ALD-grown insulation and resistor materials for capacitively coupled pixels.

Silicon Drift Detector SDD

- SDD detector utilizes Concentric electrode structure to provide horizontal field.
- Electrons drift to the relatively small anode.
- Excellent energy resolution due to small capacitance

Thin SDD

- Thin SDD detector (less than 100 microns)
- Large surface area (from several mm² up to cm²)
- Transparent detector for low energy X-rays (10 keV +)
- Collaboration with Okmetic Oy using SOI technology.
- Silicon detector is attached on a support wafer and thinned and patterned.
- Simulations undergoing, studying processing methods.

Low Gain Avalanche Detector (LGAD)

- Halfway between conventional silicon diode and an avalanche diode
- Signal amplified in a highly-doped avalanche region close to the anode.
- High signal-to-noise ratio.
- Suitable for high-rate environments.
- Excellent time resolution: 30 ps.

E. Brücken, T. Hildén

LGAD - Fast timing detector

- Study of partial activation of boron
 - Proposal for RD 50 project
 - LGADs suffer acceptor removal at high fluences:
 - $B_s + Si_i \rightarrow B_i$
 - $B_i + O_i \rightarrow B_iO_i$
 - Start with higher doping of boron
 - Only partially activate the boron (annealing process)
 - Out-of-lattice boron atoms may reduce acceptor removal
 - -> Improved radiation hardness of LGADs.

Seidel & Mac Rae, Rad Eff 7 (1971) 1

CdTe detector development

- Production of prototype pixel sensors
- 3d scanning CdTe crystals with IR camera scanner and ML based analysis to find defects.
- Development of Transient Current Technique (TCT) -based methods for electrical characterization of defects.
- Current setup utilizing red, NIR, and IR lasers for probing different depth ranges of the crystal

Passive tomography for Boron Neutron Capture Therapy (BNCT)

- BNCT activities a follow-up to the earlier Academy of Finland RADDESS call project, Multispectral Photon-counting for Medical Imaging and Beam characterization
- Received 4-year Academy of Finland funding via HUS for testing detectors at their BNCT facility. Collaboration with Detector Technology Plc.
- Goals
 - Evaluating current technological performance
 - Mapping out strengths and limitations of tested detectors
 - First 3d image of the boron concentration inside a phantom by passive tomography
- Short-term objectives
 - Background radiation measurement
 - Beam profile measurements with CMOS X-ray flat panel detector
 - Measurement of prompt gammas from the BNC reaction using CdTe-based photon-counting line detectors

BNCT

- Acquired two CdTe based line detectors and a CMOS panel detector with neutron converter from Detection Technology Plc.
- Preparation for beam tests at HUS
- Now testing the detectors, running simulations and building tools for tomography.

Thank You!