sck cen **Belgian Nuclear Research Centre**

Measuring mass attenuation coefficients for materials with unknown composition by performing transmission measurements with a HPGe detector for X-rays and low-energy gamma rays

Leen Verheyen

leen.verheyen@sckcen.be

Laboratory for gammaspectrometry Sample types - Gamma lims – efftran – Genie2K Materials and vials Calibration curves with transmission measurements Implementation in routine lab Conclusion

Laboratory for gammaspectrometry

20 HPGe det >> 5 Low Energy, 1 Well typen, LEGE and 12 coaxial

• Home made gamma lims

sck cen

SCK CEN/57081506

- Automatically N2 filling system
- Weighing balance with online registration
- Digital signal analyzer LYNX (Mirion)

Samples

Different geometries

- +/- 3500 samples per year
- Weekly QA and monthly Background
- Measurement in different geometries
- Volumes from 4 2400 ml
- Filters
- Cartridges

4

Gamma lims

ORDER ID 20386 C_LIMS_ID: 63962) 🕨 灯 🚧 🔒 💿		Confirmatio	on Date	
Reception date 17/08/2023	Order_status:	Firm / CC or WBS SCK•C	EN - Gebouw EME	~	0/0/223	0020386
Reference SMN23008		Contact name Sneyer	'S	~		
L		CC or WBS ESURV2	124-23	~	Print C	Order Print LAB
Order Comment:					Barco	Sheet Sheet
Sample ID 46304	 ▲ 1 of 1 → ▶ 	* Sample Ref SMN2300	8			
			-			
C-LIMS ID 186820	🖌 🗠 🔒 💿 🛛 Copy Previous	s				
Sample status:						
O Buildup None	on O Irradiation	Sample Parameters	VALUE ERROR	UNIT	Type : Routin	ie 🗸
Sample Collection Start Date	18/07/2022 12:00:00	Sample net weight /error	302.98 0.00	(a)	Time Preset (s) 54000	
Sample Collection Start Date	16/07/2023 12:00:00	Sample height:	64.28 0.00	(mm)		
Sample Collection Stop Date	16/08/2023 12:00:00	Additive weight / error		(0)		
Sample Ref Date :		Sample Density / error	0.54 0.00	(a/cm ³)		
Sample Collector :			0.54			
	∩k₽a	Sample quantity / error	C 0.30 0.00	kg 🗸 🗌		
Nuclida Vester i Commo 2						
Gamma 2	~		+0 +3 +10 +28			
Sample has Certificate 🗌 # addit	tional certificates: 🚺 🖉	Report due date :	25/09/2023 🥒			
Viel Type : 500 ml		Sample disposal date:	28/09/2023			
Viai Type : Sou mL	~				5004630400	020386
Matrix Name : Dirt1	\sim	sample_risk_code:	0		Print :	Sample
		sample_analysis_code:	BSD		Bar	code
SAMPLE DESCRIPTIONS SAMPLE GEO	OMETRY SUPPLEMENT COSTS	;				
	Actual values: Refe	rence values: Difference (%):	Requires Efficiency to	ransfert 🗹		
Filling height (mm):	58.68	52.80 10.02	Random Error (%):	0		
Sample Density: (a/cm ³)	Dirt1 0.54	water DIFFERENT	Systematic Error (%)): 0		
Container Diameter: (mm)	113.98	113.98 0.00				
Container Bottom Thickness: (mm)	1.80	1.80 0.00	Use fixed Volue	557.45		
Container Side Wall: (mm)	2.00	2.00 0.00	Computed Volume (mL)	557.45		
Container Material:	Polypropyleen 🗸 Polypr	ropyleen EQUAL	Reference Volume (mL)	500.00		
Container Density: (g/cm ³)	0.91	0.91 0.00	Filling height / error 111.	14 0.00		
Container Gap: (mm)	3.80	3.80 0.00				

Efficiency transfer for routine gamma-ray analyses

 $\varepsilon_{s}(E) = CF(E)\varepsilon_{ref}(E)$

- Efficiency transfer systematic corrections for various counting parameters deviating from reference calibration (EFFTRAN)
- Systematically in each analysis
 - Filling height (if no 100% filling is used)
 - Apparent sample density
 - Sample material
 - **chosen from list** for well known materials
 - Requires specific element composition when gamma-ray energy (30-100 keV)
- Any other sample parameter that is different from the reference

Efficiency Transfer and Uncertainty Budget *imported in Genie 2000*

Uncertainty polynomial *Known material versus material class*

- Error curve for each counting geometry
- Filling height, diameter, bodem thickness, sample density, positioning, curve fitting, calibration source, system drift, gamma intensity, counting loses, ...

Means to determine sample attenuation

- Generic compositon
- Comparison with representative standards
 - Not very practical
- XRF-handheld monitor, ICP-MS, ...
 - Specify sample material for the EFFTRAN model >> elements from Mg → U >> ? O, H
- Multi Energy gamma-ray transmission
 - Absolute measurement using collimated beam
 - Relative attenuation measurement using no collimation

Calibration curves with transmission measurements Ba-133 and Am-241

- X- and γ -rays in the range (21.2 303 keV)
- on a set of well known sample materials for which the mass attenuation coefficients are derived from XCOM
- Vial: thickness 10 mm

Materials

- Set of materials with well-known chemical composition for which the attenuation data at the transmission energies are computed with XCOM.
- Salts, plastics, metals, ...

Calibration curve >> E

Calibration curve >> mass att. file

calibration curves

$$\mu_E(ln\left(\frac{r}{r_{ref}}\right))_{rel} = a_E ln\left(\frac{r}{r_{ref}}\right) + b_E$$

- $\frac{r}{r_{ref}}(E)$ >> transmission trough a material relative to the count rate for transmission trough the reference material (water in our case)
- Unknwon material X >> mass attenuation coefficients can then be determined from the calibration curves as

$$\mu_X = \mu_0 \frac{\rho_{ref}}{\rho_X} \left(a_E(E) \ln\left(\frac{r_X}{r_{ref}}\right) + b_E \right)$$

 \rightarrow a mass attenuation file can be set up for an unknown material

Efficiency Transfer procedure with measured µ-data

Transmission spectrum

• Attention for a good fit!

• *K-edges, a source of discontinuities in gamma attenuation*

Calibration curve for determining μ_{rel} at 21.6 keV from transmission relative to water. The materials air, water and aluminium are indicated. $\mu/\mu_{rel} =$ 1 means μ is equal to the mass attenuation of water.

Implementation routine

2 transmission measurements Peak surface Tranfer to mass attenuation file > .txt

ANSMISSION CALC	ULATIONS													
Parameters						1 200								-
Reference	Na2CO3					1.200								
Date	20/05/2022													
Source	Am + Ba					1.000								
Density (g/cm3)	1.202													
Live time Am241 (s)	4201.9					0.800								
Live time Ba133 (s)	4201.9													
						2/g)	•							
						<u> </u>								
Source	Energy (keV)	Peak surface (cts)	μ (cm2/g)	Relative μ unc	ertainty	크								
Am241	21.16	9.30E+04	1.120	0.028		0.400								
Am241	26.34	1.10E+05	0.678	0.272								y = 14.3	44x ^{-1.003}	
Ba133	30.97	1.30E+06	0.469	0.919		0.200						K- = U	0.8005	
Am241	33.20	8.10E+03	0.389	0.258										
Ba133	35.05	3.54E+05	0.356	1.045							••••••			
Ba133	53.16	3.68E+04	0.161	0.484		0.000	E0.0	100	00 15/	100 200	00 250	00 200	00 2507	00
Am241	59.54	3.21E+06	0.203	0.064		0.00	0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00							
Ba133	81.00	6.89E+05	0.133	0.178			Energy (keV)							
Ba133	303.00	1.77E+05	0.069	1.180										

Conclusion

- The transmission source should be at a distance of at least 20 cm from detector to avoid true coincidence summing effects and measurements are best made with Ba-131 and Am-241 sources sequentially;
- Attenuation parameters can be determined with a precision of a few percent depending on the quality of the calibration curve and the complexity of the spectra;
- No K or L edges in the attenuation of the sample material can be determined with this method;
- The method may fail if spectra are dominated by Xray fluorescence peaks of the sample material.

Thank you for your attention

Copyright © SCK CEN

PLEASE NOTE!

This presentation contains data, information and formats for dedicated use only and may not be communicated, copied, reproduced, distributed or cited without the explicit written permission of SCK CEN. If this explicit written permission has been obtained, please reference the author, followed by 'by courtesy of SCK CEN'.

Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK CEN

Belgian Nuclear Research Centre

Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSELS Operational Office: Boeretang 200 – BE-2400 MOL

Applied to low and high-energy dual efficiency curve

SCICCEN | SCK CEN/57081506

Cutshall Attenuation Correction Procedures (two times wrong = right ?)

