The European Commission's science and knowledge service

Joint Research Centre

(Ultra-)Low Background Gamma-ray Spectrometry

.

7

100

K:

¥.

Mikael Hult

European Commission – Joint Research Centre – Directorate for Nuclear Safety and security, JRC-Geel

Nordic Nuclear Safety Research, NKS-B Gamma Spec, Risö, Sept. 19-20, 2017

Outline

• The JRC

- Low background in gamma-ray spectrometry (brief extract from courses)
- Point contact detectors
- Top deadlayer characterisation
- Examples of applications
- Upcoming meetings:
 - Radioactivity in feed workshop+training
 Jan. 30 Feb. 2, 2018 (at JRC-Geel)

Joint Research Centre

- JRC is the European Commission's in-house science service. It provides the science for policy decisions,
- One of the Directorate Generals of the European Commission
- **Mission...** is to <u>provide</u> customer-driven <u>scientific and technical</u> <u>support</u> to Union <u>policies</u>.
- **Dir. G.:** To implement the JRC Euratom research and training programme, to maintain nuclear competences in Europe to serve both "nuclear" and "non-nuclear" Member States.

External access scheme - EUFRAT https://ec.europa.eu/jrc/en/eufrat

EU SCIENCE HUB

The European Commission's science and knowledge service

European Commission > EU Science Hub > EUFRAT - European facility for nuclear reaction and decay data measurements

🛛 🍘 About Us Research Knowledge Working With Us Procurement News & Events

EUFRAT

s Our Communities

Home

Call for Proposal

European

Commission

How to apply

Programme Advisory Committee

Before you start

Accepted proposals

Contacts

Forms

EUFRAT – European facility for nuclear reaction and decay data measurements

Transnational Access of external users to JRC nuclear facilities

The unit Standards for Nuclear Safety, Security and Safeguards (SN3S unit) of the Directorate for Nuclear Safety and Security of the Joint Research Centre (JRC) in Geel, Belgium, operates a unique nuclear research infrastructure dedicated to the measurement of accurate nuclear reaction and decay data. These measurements serve the needs of safe operation of nuclear reactors, safe handling of nuclear waste and the radiological protection of the safety of the citizen and the environment.

Related Publications

Search for the decay of nature's rarest isotope 180mTa

Variation of natural radionuclides in non-ferrous fayalite slags during a one-month production period

Radiological characterization and evaluation of high volume bauxite residue alkali activated concretes

Nuclear activities of the Joint Research Centre. European Atomic Energy Community (Euratom) Research Infrastructure

NKS-B Gamma Spec, Risö, Sept. 19-20, 2017

External access scheme - EUFRAT

Via the transnational access programme EUFRAT, JRC offers external researchers from the EU Member States and 3rd countries experimental possibilities at its nuclear facilities. There is a permanent call for proposals for experiments. Selection of experiments is based on peer review by international experts representing the stakeholder community.

The 📓 eufrat-facilities of JRC Geel encompass:

6

- a <u>150 MeV linear electron accelerator</u> (GELINA) with a highresolution neutron time-of-flight (TOF) facility;
- a <u>7 MV Van de Graaff facility</u> for the production of continuous and pulsed proton-, deuteron- and helium ion beams which is serving as a source of well characterised quasi-monoenergetic neutrons;
- a broad set of experimental set-ups used for nuclear decay measurements, the <u>Radionuclide metrology laboratories</u>;
- a low-level radioactivity laboratory in the <u>deep-underground facility</u> <u>HADES;</u>
- a unit for the preparation and characterisation of actinide and stable targets needed for nuclear data measurements.

External researchers from the EU Member states and 3rd countries can propose an experiment at these facilities, provided JRC experimental infrastructure can offer a significant added value to the project proposal. JRC launches a permanent Call for Proposals. Proposals are peer reviewed by a <u>Programme Advisory Committee</u> (PAC).

Related Facilities & Laboratories

HADES underground laboratory Linear electron accelerator facility Radionuclide metrology laboratories Van de Graaff accelerator 🕽 🔒 🛛 https://ec.**europa.eu**/jrc/en/research-facility/open-access

LUIUDEC

https://ec.europa.eu/jrc/en/researc EU SCIE h-facility/open-access

The European Commission's science and knowledge service

European Co Google: "JRC, open access, infrastructure"

Research

Commission priorities

European

Commissio

Science areas

Research topics

Centre for Advanced Studies

Laboratories & facilities

Open Access of JRC Research Infrastructures

> Framework for Access About

Crosscutting activities

Open access to JRC Research Infrastructures

The European Commission's Joint Research Centre (JRC) opens its scientific laboratories and facilities to people working in academia and research organisations, industry, small and medium enterprises (SMEs), and more in general to the public and private sector.

The JRC offers access to its non-nuclear facilities to researchers and scientists from EU Member States, candidate countries and countries associated to the EU Research Programme Horizon 2020. For nuclear facilities, the JRC will open to EU Member States, candidate countries (on the conditions established in the relevant agreement or decision) and countries associated to the Euratom Research Programme

Offering access to visiting researchers is part of JRC's strategy to:

- · enhance dissemination of scientific knowledge;
- boost competiveness;
- · bridge the gap between research and industry.

Or... email to Mikael.hult@ec.europa.eu

NKS-B Gamma Spec, Risö, Sept. 19-20, 2017

Euratom Treaty, ARTICLE 6:

.

To encourage the carrying out of research programmes communicated to it the Commission may:

(c) place installations, equipment or expert assistance at the disposal of Member States, persons or undertakings, either free of charge or against payment;

Euratom Treaty, ARTICLE 8:

.....the Commission shall establish a Joint Nuclear Research Centre.

This Centre shall ensure that the research programmes and other tasks assigned to it by the Commission are carried out.

It shall also ensure that a <u>uniform nuclear terminology and a</u> <u>standard system of measurements are established.</u>

It shall set up a <u>central bureau for nuclear measurements</u>. (CBNM)

Primary standardisation of activity
 Decay data
 Realisation of the unit Bq

JRC-Geel

Europear

2017

HADES

HADES = High Activity Disposal Experimental Site - Operated by EURIDICE and located at SCK•CEN in Mol

Background Comparison – Gamma-ray spectrometry

The simplified Basic Equation for gamma-ray spectrometry $C = A P_{\nu} t \varepsilon$

Europea

The (almost) complete basic equation for gamma-ray spectrometry

Combine activities from several gamma-rays from one radionuclide

Combine activities from several daughters into one activity for the mother (like for ²²⁶Ra and the ²²²Rn-daughters)

Ge-detectors

•The workhorse of modern radiometric laboratories

- Li-drifting first described in 1960 (Pell)
- First Ge-detector in 1963 (Tavendale): 1 cm³, same resolution as a NaI detector.
- Improved detection limits if FoM is maximised (important for low-level measurements)

FoM =
$$\frac{\varepsilon(E)}{\sqrt{R(E)B(E)}}$$
 = $\frac{efficiency}{(FWHM \times background)^{\frac{1}{2}}}$

Ge-detectors

- Different types needed for:
 - Low/high energy
 - Small/big sample
- Don't buy bigger crystal than necessary!
- Small samples benefit from well-detectors (high ε)
 at least when it comes to single gamma-rays emitters like Pb-210,
 Am-241, Cs-137, etc.

And for double beta decay!!! (bigger than BeGe-detectors)

• Low detection limits for massic activity (µBq/kg) requires big samples

How long measurement time can you afford?

1 mBq ~ decay per hour 1 μBq ~ decay per week

¹⁷ NKS-B Gamma Spec, Risö, Sept. 19-20, 2017

Low background

Low level Gamma-ray Spectrometry (LGS) =

Gamma-ray spectrometry using a <u>detector and shield</u> built from selected radiopure materials

Ultra Low level Gamma-ray Spectrometry (ULGS) = LGS with additional measures such as placement in an underground laboratory or use of a muon shield.

Example of a Low Background Detector

Inner 2.5 cm from ULB lead (2 Bq/kg)

Endcap, cryostat and front-end electronics from selected radiopure materials

Pre-amp outside lead shield

Tube for nitrogen "flushing"

The background in gamma-ray spectrometry

- Important to know accurately both for qualitative as well as quantitative analysis!
- May vary with time (decay, contamination, natural variation, noise)
- Understanding of the sources is important in order to properly correct for the background as well as to improve it!

The background in gamma-ray spectrometry

- 1. Primordial
- 2. Anthropogenic (man-made)
- 3. Cosmogenic

Primordial radionuclides

(natural, existing since the formation of the earth) Earth is about 4.5-10⁹ years

```
<sup>238</sup>U, T_{\frac{1}{2}}= 4.5·10<sup>9</sup> years

<sup>235</sup>U, T_{\frac{1}{2}}= 0.7·10<sup>9</sup> years

<sup>232</sup>Th, T_{\frac{1}{2}}= 14·10<sup>9</sup> years

<sup>40</sup>K, T_{\frac{1}{2}}= 1.3·10<sup>9</sup> years
```

Decays to

radium-226, radon-222,

polonium-210, lead-210 etc.

Bad materials:

Very often: electronics, printed circuit boards, FET etc. Rubber, silicone foam, normal AI, Be, molecular sieve, aluminized Mylar

Solder: Contains Pb and other stuff Solution: Use pure tin

Teflon: Not good above ground due to neutron interactions with F - Good underground

Plastics etc.: Generally radiopure. Can be prone to accumulate radon gas

Indium – radioactive? Yes

Commission

Point-contact Ge-detectors

Since ~10 year: Point contact detectors Canberra: BEGe (Broad Energy Germanium)

Small anode \Rightarrow low capacitance \Rightarrow reduced noise \Rightarrow good resolution

Since ~2 years: Point contact detectors in well-configuration Canberra: SAGe (Small Anode Germanium)

David Radford (ORNL) (Majorana, Gammasphere, Gretina,..) Interest from LEGEND (~GERDA Phase III)

Commission

Detector Ge-14 in final shield in HADES

	Ge-14	Ge-3	Ge-7
		60% rel. eff coaxial	90% rel. eff. Coaxial (XtRa)
Peak/interval	Installed 2015	Installed 1997	Installed 2006
(keV)	(d ⁻¹)	(d ⁻¹)	(d ⁻¹)
46.5	0.45±0.20	1.28±0.25	1.3±0.2
186	< 0.6	<0.40	1.11±0.19
238	18±1	0.87±0.20	2.9±0.3
352	1.2±0.3	0.72±0.15	2.2±0.2
911	1.03±0.23	0.45±0.10	0.83±0.12
1332	1.34±0.25	< 0.05	0.60±0.10
1460	0.54±0.21	0.62±0.09	1.13±0.12
1764	1.04±0.20	< 0.07	0.67±0.09
2614	1.20±0.17	< 0.05	0.78±0.09

Background count-rate (selected lines)

	Ge-14	Ge-3	Ge-7
		60% rel. eff coaxial	90% rel. eff. Coaxial (XtRa)
Peak/interval	Installed 2015	Installed 1997	Installed 2006
(keV)	(d⁻¹)	(d ⁻¹)	(d ⁻¹)
40-1500	612±8	325±2	410±2
1500-2700	95±3	11±0.4	32±0.5
40-2700	707±8	336±2	442±2
40-2700 divided by Ge-mass in kg	275±2	250±2	245±1

Background countrate for selected intervals

237 d⁻¹ with muon shield

Activity of Components (mBq/g)

Radionuclide*	Capacitor	Al-endcap	contacts	Epoxy glue
²³⁸ U	2.9±0.7	< 0.021	19±9	1.89±0.17
²²⁶ Ra	24.5±1.0	< 0.012	< 0.4	1.26±0.06
²¹⁰ Pb	22±4	< 0.03	< 0.14	1.5±0.3
²²⁸ Ra	6.9±0.5	< 0.005	0.18±0.03	0.16±0.02
²²⁸ Th	4.0±0.3	< 0.007	0.24±0.03	0.17±0.02
⁴⁰ K	1.4±0.4	< 0.022	0.38±0.14	2.7±0.2

Pb-212/Th-228? Thoron from a surface??

"Ge-14" in temporary shield

The JRC-Geel scanning station

Contains a 5 MBq Am-241 source

The JRC-Geel scanning station

Top line scan of 21 y old detector

- Kept "warm" for > 10 years

Crystal position / mm

Top line scan of 13 y old detector

- Kept "warm" for ~ 2 months

Crystal position / mm

Top line scan of 35 y old detector

- Kept warm for 28 years

Computer model with "adjusted" deadlayer

Take good care of your Ge-detector

- Important to try to keep cold at all times

Measurements Matter Meten is Weten

Tracer studies. Using radioactivity from Fukushima

Sampling locations during the period from March 2011 to Oct. 2012

Dr. Michio Aoyama Meteorological Research Institute, Fukushima University Japan

- ¹³⁴Cs and ¹³⁷Cs (also Ag-110m + search for others) (~ mBq/L)
- sea-water, plankton and suspended particles
- Collaboration with (i) Oceanographic Society of Japan, (ii) Fukushima University and (iii) Woods Hole Oceanographic Institute (USA).

Important for models on climate change

<u>input to the IPCC</u> <u>work</u>

Water precipitate (AMP)

Filter w. phyto-plankton and particulate matter

IR1202 #7. K2-500Freeze dried zooplankton

Samples from the Northern Pacific

Commission

REFERENCE MATERIALS (CRM, PT, testing,..)

Calibration standards for free release measurements

Metal disks certified (low) ⁶⁰Co-activity

Homogeneity verified in HADES

Production ready Certification ongoing: 2017-2018. Planned CRM release: 2019.

Reference Materials

Metrological tools for nuclear decommissioning Calibration standards for **free release** measurements

Spectrometer for free release (CMI/Envinet, Czech Rep.)

Metal tubes certified (low) activity ⁶⁰Co,^{108m}Ag

Tubes produced in 2016. Certification (partly in HADES) during 2017.

Determining the distribution of ⁶⁰Co and ^{110m/108m}Ag in cast iron tubes

SWARF (shavings) ~0.3 g / sample In total 108 samples were measured in HADES

Swarf from inside (odd number) AND outside (even number) of tubes

Calibration standards for radioactive waste management.

Employed at Free-Release Measurement Facility in Prague.

Euratom Treaty, <u>Chapter 3 – Health & Safety</u>

ARTICLE 39:

The commission shall set up within the framework of the JRC..... a health & safety documentation study section.... and assisting the Commission in carrying out the tasks assigned to it in Chapter 3.

Euratom Treaty, <u>Chapter 3</u>, ARTICLE 35 + 36:

Article 35

Each Member State <u>shall</u> carry out continuous monitoring of the level of radioactivity in the <u>air, water and soil and to ensure</u> <u>compliance with the basic standards*</u>. The Commission shall have the right of access to such facilities; it may <u>verify their operation</u> <u>and efficiency</u>.

*see Article 31

Article 36

The appropriate authorities shall periodically communicate information so that the Commission is kept informed of the level of radioactivity to which the public is exposed.

JRC-Geel

JRC-Ispra

Proficiency Tests in support of Article 35 (since 2003)

Year	Matrix	Radionuclide(s)
2010	Soil	⁴⁰ K, ¹³⁷ Cs, ^{212/214} Bi, ^{212/214} Pb, ²²⁶ Ra, ^{230/232} Th, ^{234/235/238} U, ^{238/239/240} Pu, ⁹⁰ Sr
2011	Bilberry	⁹⁰ Sr, ¹³⁷ Cs, ⁴⁰ K
2012	Water	Total a / ß activity
2014	Air filter	¹³⁷ Cs
2017	Maize	¹³⁴ Cs, ¹³⁷ Cs, ¹³¹ I
2018	Water	Radon
2019	Water	Total a / ß activity
2020	Air filter	¹³⁴ Cs, ¹³⁷ Cs, ¹³¹ I

2015-2016 Air filter ^{134,137}Cs, ¹³¹I (MetroERM project)

Request for: > 1 per year, >200 participants

New developments

Precision pattern robot dispenser developed and tested

Old pattern (manual)

Dispenses from 20 µl to 4 ml in various patterns and geometries

New automated pattern

Laboratory number

participant's result

Important to identify and address "gaps"

- Training course & workshop on gamma-spec. of air-filters
- ... of particular importance for **non-nuclear Member States**
- Enables a correct response to sudden discharges of radioiodine!
- Every PT is now followed by a workshop and training

Reference Materials for feed

Hay & maize

• PT for Article 35 finalised. Workshop January 31, 2018.

Project Leader: Kasia Sobiech-Matura

- Submitted first draft CEN standard on measuring ¹³¹I, ¹³⁴Cs and ¹³⁷Cs in feed
- Two reference materials for **method** validation, maize and hay from Chernobyl
- Questionnaire to MS for food & feed measurement methods (requested by Article 35 Experts)

Upcoming meetings/conferences

- CELLAR meeting Bucharest Nov 22-23, 2017 Romulus Margineanu <u>romulus@ifin.nipne.ro</u>
- Maize Participants workshop+training Geel, 30/1-2/2, 2018 (petya.malo@ec.europa.eu)
- ICRM conference Salamanca May/June 2019 (Begoña Quintana-Arnes)
- ICRM-Low-level Radioactivity Measurements Techniques (Sept.?) 2020, Gran Sasso, Italy (Matthias Laubenstein)
- □ EUFRAT Users' Meeting, 4-7 December 2017, JRC-Geel

Acknowledgement

Guillaume Lutter, Faidra Tzika, Gerd Marissens, Heiko Stroh

The HADES team at SCK•CEN (EURIDICE).

Thanks you for your attention !

We are not the only ones digging tunnels in Mol.

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

Facebook: EU Science Hub - Joint Research Centre

LinkedIn: Joint Research Centre

YouTube: EU Science Hub

Collaboration of European Low-level <u>underground</u> LAboRatories

Mission: To promote higher quality and sensitivity in ultra low-level radioactivity measurements for the improvement of crisis management, environment, health and consumer protection standards of Europe.

