Extension of efficiency-curves to low and high energies

András Kocsonya HUN-REN Centre for Energy Research (earlier KFKI), Budapest, Hungary

energy range of common radionuclide standards

Now we restrict our study to calibration with physical standards, no computational calibration.

2.

certificates of a MIX calibration standards

1. MIX 2018-014 A (kBq)

241Am 396,1

152Eu 502,4

133Ba 484,5

60Co 980,8

137Cs 696,0

ref. date: 2018-06-01

energy-range:

excluding X-ray lines: 53 keV – 1408 keV including X-ray lines: 31 keV – to 1408 keV considering gamma- and X-ray lines with branching ratio >1%

However efficiency-calibration is needed for lower and higher energies:

¹²⁵I: 27.4 keV

²⁴Na: 1368.6 keV, 2754.0 keV

Nuclide	Energy [keV]	Yield [%] IAEA TECDOC 619	Expand ed Uncert.[%]
Cs-137	32.1	5.540	1.60
Am-241	59,54	35.680	1.50
Cd-109	88,03	3.626	5.80
Co-57	122.1	85.510	1.40
Co-57	136.47	10.710	1.40
Ce-139	165.9	79,900	1.40
Sn-113	255.00	2.110	4.00
Cr-51	320.1	9.870	1.90
Sn-113	391.7	64.940	4.00
Sr-85	514.0	98.500	1.60
Cs-137	661.7	84.990	1.60
Y-88	898.0	93.900	1.70
Co-60	1173	99.850	1.50
Ço-60	1333	99.983	1.50
Y-88	1836	99.380	1.50

energy-range: 32 keV - 1836 keV

disadvantage:

several short-lived (T_{1/2} < 1 year) radionuclides

Össz.:

→ the effective lifetime of of the standard is limited

extension of the energy-range

The sources used to extend energy-range should not be calibrated, only the indentical sample geometry is needed.

Their activity is measured based on their gamma-emission lines in the calibrated energy-range. Emission intensities in the low and high energy-range are calculated based on activity and braching ratio.

detection efficiency:
$$\varepsilon = \frac{\text{detected count rate}}{\text{emitted count rate}} = \frac{\text{net peak area}}{\text{A} \times \text{I}_{\text{V}} \times \text{LT}}$$

Extension of efficiency curve to low energies

Extension of efficiency curve to high energies

most intense gamma-lines of the used radionuclides

(a) ²⁰⁸ Tl		(b) ²¹⁴ Bi			
	E(keV)	gyakoriság (%)		E(keV)	gyakoriság (%)
	277.4	6.3 %	*	609.3	46.1%
	510.8	22.6%	*	1120.3	15.1%
*	583.2	84.5%		1238.1	5.8%
*	860.6	12.4%	\rightarrow	1764.5	15.4%
\rightarrow	2614.5	99%			

an example on wide energy-range calibration

Efficiency calibration with natural Uranium-ore: the whole ²³⁸U decay chain in secular equilibrium

+235U in natural abundance (0.71%)

42 data points: ²³⁴Th: 3, ^{234m}Pa: 2: ²³⁴U:2, ²³⁰Th: 1, ²²⁶Ra: 1, ²¹⁴Pb: 5, ²¹⁴Bi: 14 efficiency-curve can be extended toward higher energies, up to 2447.9 keV (²¹⁴Bi) without exact uranium-mass: relative efficiency curve: extended to absolute by an additional standard (¹⁵²Eu)

known line overlap: ²²⁶Ra 186.2 keV <-> ²³⁵U 185.7 keV

Thank you for your attention!

András Kocsonya, PhD senior research scientist

kocsonya@rmki.kfki.hu

HUN-REN Centre for Energy Research, Budapest, Hungary