A Wide Spectrum: NKS Gamma Spectrometry Activities Over Two Decades

An overview of gamma spectrometric activities conducted by the NKS since 2000

NKS GammaRayX Seminar, 20 - 21 October 2021

Direktoratet for strålevern og atomsikkerhet

Norwegian Radiation and Nuclear Safety Authority

NKS-B Gamma Spectrometry Overview

Total delivered reports under NKS B - 224

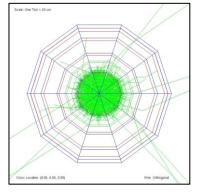
Measurement Strategy, Technology and Quality Assurance - 69

Radiological and Nuclear Emergency Preparedness - <u>115</u> 184

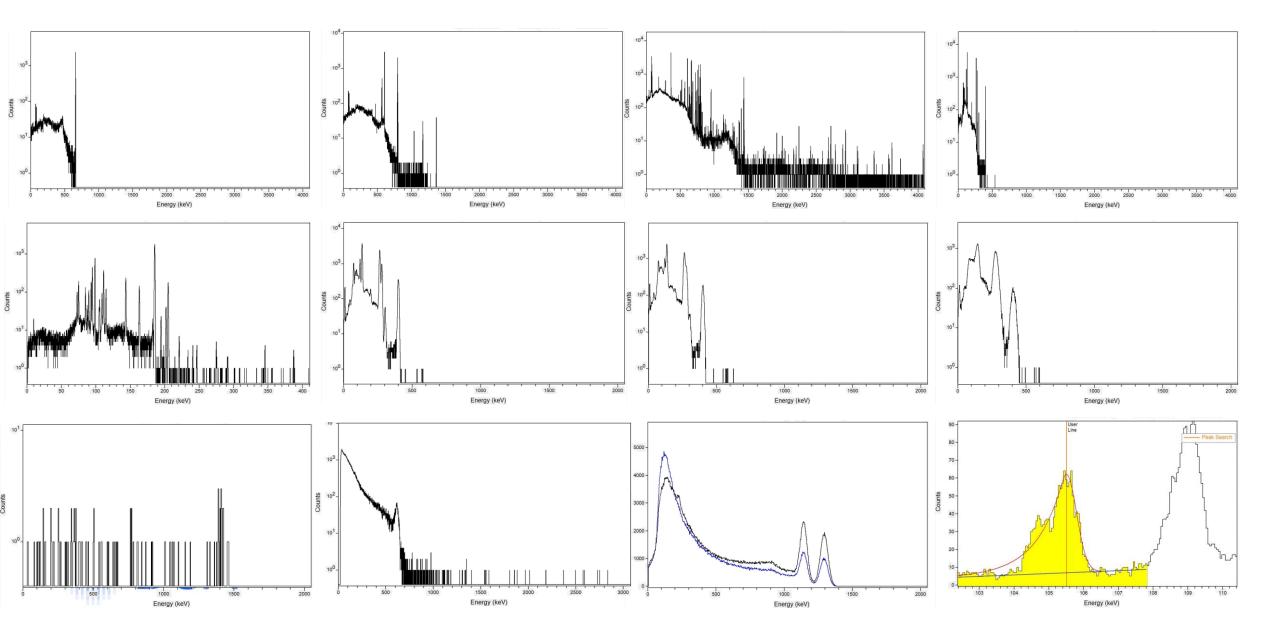
Gamma Spectrometry included - 129

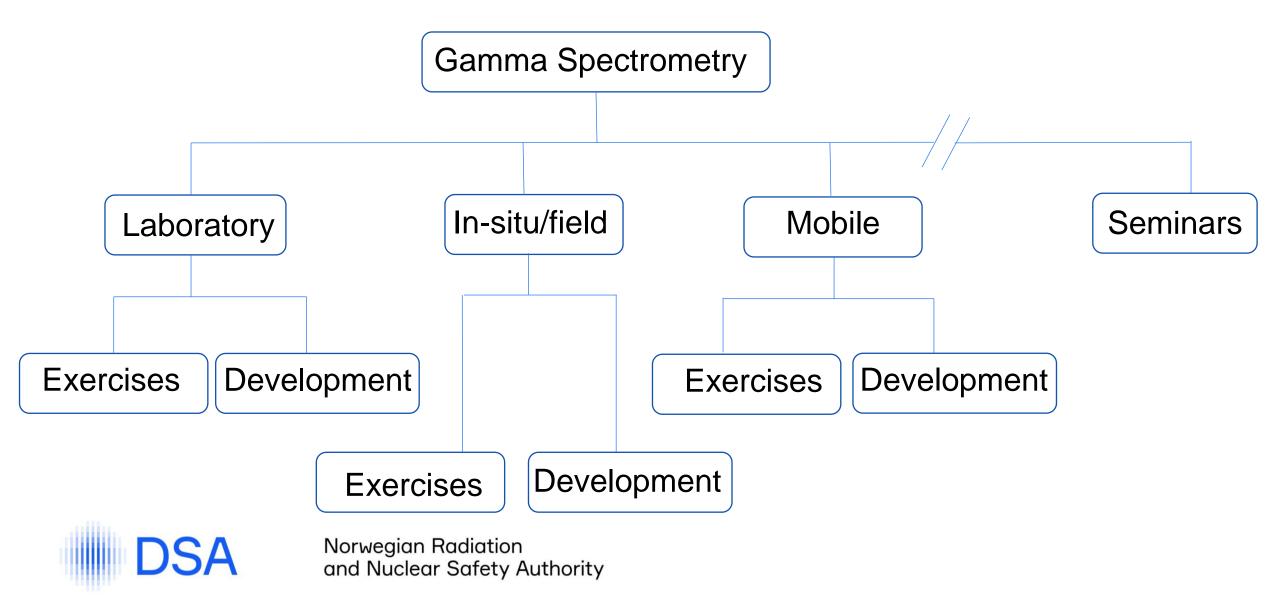
Gamma Spectrometry focussed specifically - 31

> 53000 downloads for the 31!!



Direktoratet for strålevern og atomsikkerhet





NKS-B Gamma Spectrometry Overview

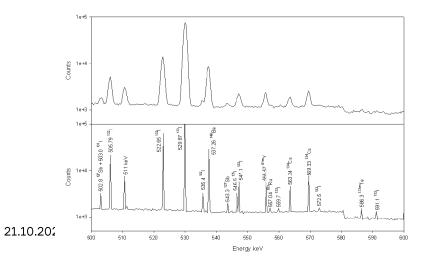
NKS-B Gamma Spectrometry Overview

Laboratory Exercises

	Nuclide (+- 5-30%)	Bq/sample
	Na-22	9.5
Project: The Use of Synthetic Spectra to Test the Preparedness to Evaluate and Analyze Complex	K-40	9750
Toject. The ose of Synthetic Opectra to Test the Treparedness to Evaluate and Analyze Complex	Co-57	11
	Co-60	22
Gamma Spectra, 2001, NKS-43	Zr-95	235
	Nb-95	230
	Mo-99	940
	Tc-99M	880
	Ru-103	1140
	Rh-105	21
	Rh-106	330
	Ag-110M	26
Addressing: the relative scarcity of complex, fallout spectra	Ag-111	640
	Cd-115	50
	Sb-125	63
	Sb-126	10
	Sb-127	230
	Te-129	1580
	Te-129M	1040
	Te-131	41
Time limited analysis of complex HPGe spectra (VVER-440 accident and a Chernobyl accident	Te-131M	210
	Te-132	6260
	I-131	4700
spectrum).	I-132	7550
	I-133	260
	Xe-133	68
	Cs-134	1070
	Cs-136A	380
	Cs-137	1900
	Ba-140	1120
	La-140	1320
First time partially or totally synthetic spectra appear in NKS activities	Ce-141	230
	Ce-143	22
	Ce-144	160
	Nd-147	58
	T1-208	110
	Pb-212	170
	Pb-214	100
	Bi-212	580
25 institutes from 9 countries	Bi-214	390
	Ac-228 U-235	440
	U-235 U-237	16 23
	Np-239	660
	19-235	000

Laboratory Exercises

Project: Analysis of Remotely Accrued Complex Gamma-ray Spectra – Proficiency Test (REMSPEC), 2009, NKS-188


Addressing: Lack of complex, fallout spectra with complex corrections

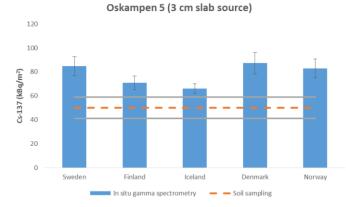
Time limited proficiency test of a complex, fallout type, wholly synthetic spectrum including true coincidence corrections, density correction, decay corrections

11 participating institutes from 8 countries

Isotope	Modeled activity Bq/m ³ .
131	3046.50
132	2937.0
133	2443.60
135	217.6
134Cs	321.9
¹³⁶ Cs	73.4
^{13/} Cs	251.8
¹⁰³ Ru	297.8
¹²⁷ Sb	218.0
¹⁴⁰ Ba	914.1
¹⁴⁰ La	209.1
¹⁴¹ Ce	66.4
¹⁴³ Ce	43.0
۹۱	376.0
⁹¹ Sr	58.9
⁹⁵ Zr	80.6
⁹⁵ Nb	409.3
^{131m} Te	202.0
¹³² Te	2850.0
¹³¹ Te	45.6
^{91m} Y	36.9
¹³⁵ Xe	193.0
¹³³ Xe	27.6

Table 1. Isotopes and activities modelled for the test spectrum NKSSPEK1

In-situ Exercises


Project: NKS-B Nordic In Situ Gamma Intercomparison (NISI), 2016, NKS-377

Addressing: The need for field exercise opportunities in the area of in-situ measurements

Intercomparison of in-situ measurements by the different NKS countries

Intercomparison of in-situ measurements vs. samples

Direktoratet for strålevern og atomtryggleik

In-situ Exercises

Project: Advanced In-situ Gamma Spectrometry Field Activity – Chernobyl

(GAMFAC), 2015, NKS-352

Addressing: lack of exercise opportunities in highly contaminated non-Nordic environments

All the NKS countries on tour in the Belarusian Exclusion Zone.

Testing of methodologies and performance:

- \rightarrow variety of depositional environments,
- \rightarrow deposition levels,
- → varierty of post depositional behaviours.
 DSA

21.10.2021

In-situ Exercises

Project: Proficiency Test in the Analysis of Gamma Spectra for Malevolent Radiological Situations (*MALRAD*), 2009, NKS-207

Addressing: the need for practice opportunities with field gamma spectrometry in incident response

In-situ measurements where the measurement – both quantitatively and qualitatively was made difficult by either the context or a perpetrator. Distribution of entirely synthetic spectra from a series of scenarios

18 participating institutes from 10 countries.

In-situ Development

Project: Activity Estimation of Shielded or Hidden Radionuclides in Emergency Conditions (RADSHIELD), 2017, NKS-399

Addressing: the determination of the properties of unknown sources in unknown locations behind an unknown shield.

- Development of methods facilitating the characterization of shielding materials
- Facilitating better estimates of activity of hidden or shielded sources

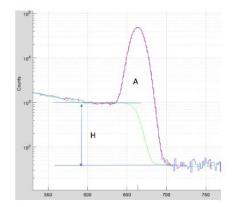


Figure 2.1 Definition of step height H (1/keV). H can also be understood as an area of a rectangle having width of 1 keV. Measurement ID 2.

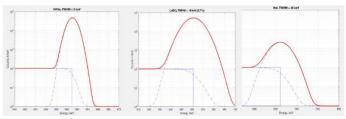
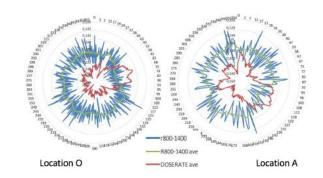
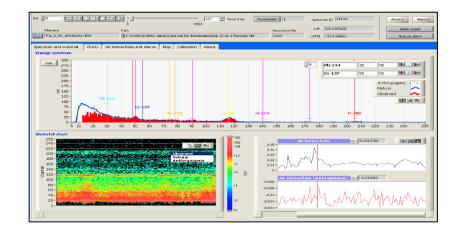
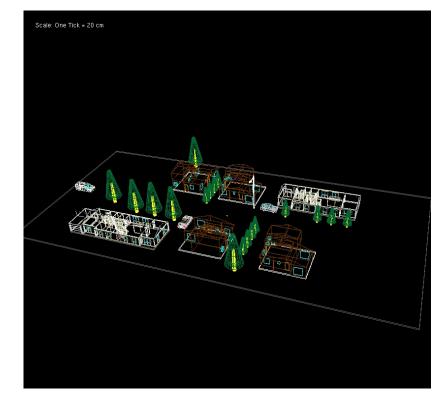



Figure 2.2 Step underneath a Gaussian peak as a function of detector resolution. The step is an inverse erf function with the same shape parameter as the peak itself. SR = 0.001; (H = 100, A = 100000). The figure shows the convolution of a step (rectangle) and energy peak at 661 keV (delta function) with a Gaussian resolution function characteristic to different detectors.

Mobile Measurement Exercises


Project: Orphan Sources and Fresh Fallout: Virtual Exercise in Mobile Measurement (*ORPEX*), 2011, NKS-252


Addressing: need for practice opportunties for mobile measurement for those not typically deploying mobile measurement equioment

Distribution of custom software and mobile measurment datasets from trips along which individual sources had been «hidden» in various configurations as well as a trip through a zone of freshly deposited fallout.

16 participating institutes from 6 countries.

Participants asked to locate, identify and quantify the individual sources and quantify and map the areas of fallout to the best of their ability.

Mobile Measurement Exercises

Project: Mobile Measurement: Field Exercise in Fallout Mapping in the Belarusian Exclusion Zone (*MOBELRAD*), 2014, NKS-320

Addressing: lack of exercise opportunities in areas of high contamination

Participants from all the NKS countries travelled to the Belarusian Exclusion Zone and spend a week conducting mobile measurements along pre-characterized routes. From the Nordic perspective:

- \rightarrow New environment,
- \rightarrow Higher contamination levels
- \rightarrow Practice in "assistance" type operations
- \rightarrow Field testing of equipment and procedures.

21.10.2021

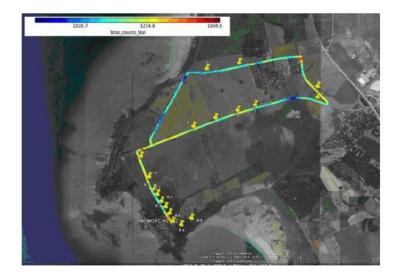
DSA

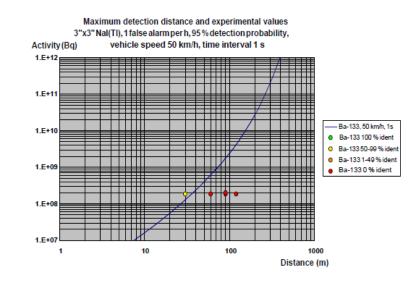
Mobile Measurement Exercises

Project: Intercomparison of Nordic Unmanned Aerial Monitoring Platforms (*NORDUM*), 2016, NKS-378

Addressing: the lack of opportunities for practicing unmanned aerial measurements in the field

Practical field exercise involving use of aerial platforms for locating, identifying and quantifying point sources in a range of environments.

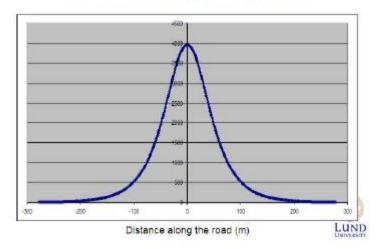



Project: Mobile Search of Material Out of Regulatory Control (MORC) –Detection limits assessed by field experiments (MOMORC), 2019, NKS-421

Addressing:

Development of means of calculation of detection limits for sources under various mobile measurement conditions.

Theoretical approaches to the problem of detection limits for mobile measurement systems coupled to field generated data for a number of platforms in use in the NKS region.


Project: Improvement of Automatic Methods for Identification of Radioactive Material Out of Regulatory Control (MORC) by Mobile Gamma Spectrometric Search Experiments (AUTOMORC), 2017, NKS-422

Addressing: improved methods of rapid registration of sources in mobile gamma ray spectrometry

Bayesian statistical analysis method to determine locations and activities for gammapoint sources in mobile search distance.

The fluence rate (intensity) curve

Project: Area Specific Stripping of Lower Energy Windows for AGS and CGS Nal Systems (ASSb), 2005, NKS-109

Addressing: more effective use of large Nal systems in mobile gamma spectrometry

Direct extraction of stripping factors from airborne (AGS) and carborne gamma-ray spectrometry (CGS) data sets without having to calibrate the detector systems beforehand.

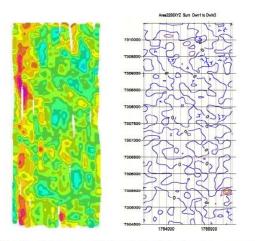
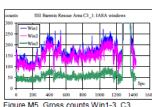
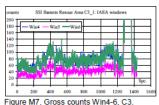




Figure I.1 and I.2. Altitude of SGU AGS equipment during Area 2 measurements (left) and stripped count rate for window 1 to 3 summed (right). The altitude scale is from light blue (below 40 m) to red-violet (above 80 m). The stripped count rate scale goes from -100 to + 300 with most curves representing 0 (surplus) counts.

counts	SSI Ba	rents Res	cue Area	C3_1: IA	EA windo	TWS.	
300			1				
250	-Del	tal .	-				_
200	Deli	ia2	-				_
150	-Del	u3 —					_
100		<u> </u>	<u> </u>		1		-
50	Health H	Huluia	Like	i ti ti ti		1	-
0							_
-50	1.1	- H	Henri	100	11 1 1	r 7	_
-100		- · ·	<u> </u>		1.4	<u> </u>	
-150		-	L			_	Spc.
0	200	400 6	00 8	00 10	00 120	0 1400	1600
Figure	M6. S	trippe	ed co	unts	Win1-	3. C3	

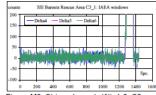
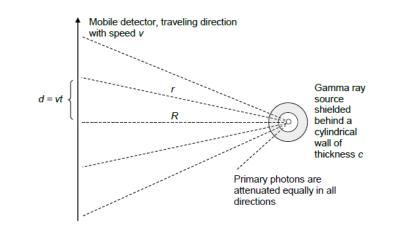
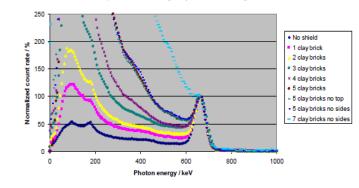



Figure M8. Stripped counts Win4-6, C3

Project: SHIELDMORC– Detection distances and methods to locate orphan gamma radiation sources in shielded building geometries by mobile gamma spectrometry (2019), NKS-433

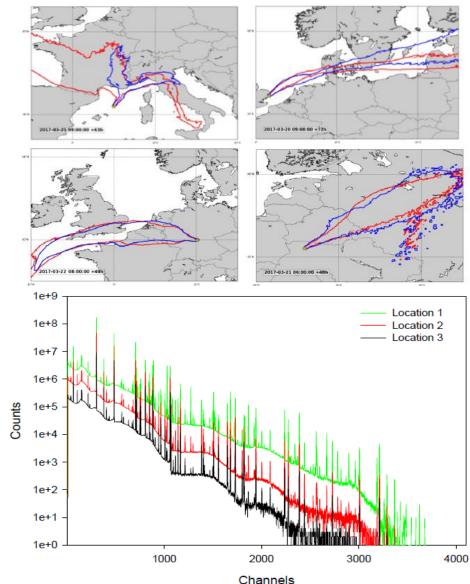

Addressing: the detection of shielded sources by mobile gamma ray spectrometry

Using areas of the spectrum not usually utilized to improve detection capacities for shielded sources during mobile measurement operations

Net normalized pulse height distribution from Cs-137 with stepwise increasing clay brick shielding

The Ones That Don't Fit.....

Project: Early Phase Source Term Estimation From Gamma Spectra (*EPHSOGAM*), 2017, NKS-400


Addressing: the problems that were evident in 2017

7 participating institutes from 7 countries.

A series of scenarios involving different types of releases from unknown locations throughout Europe.

Gamma spectra for air filters from different stations and at different times provided to participants.

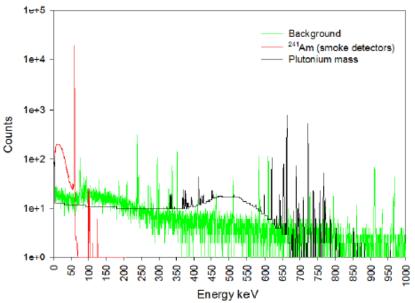
Participants required to estimate release location, time and amount.

The Ones That Don't Fit.....

Project: Gamma Spectrometric Discrimination of Special Nuclear Materials (*GASMAT*), 2012, NKS-271

Addressing: lack of exercise opportunities in dealing with gamma spectra from nuclear materials in security contexts

15 institutes from 8 countries – US DoE and NNSA through the TRIAGE programme

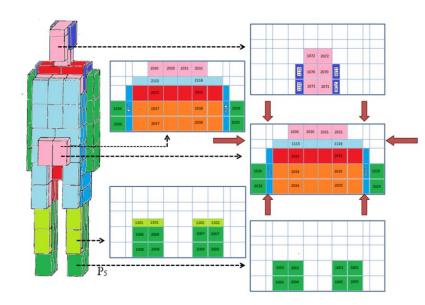

Provision of spectra that may or may not indicate the presence of SNM.

Uranium masked by NORM

Plutonium masked by smoke detectors

- Depleted uranium within scrap thorium bearing alloys
- Presence of a plutonium gamma surrogate

21.10.2021


The Ones That Don't Fit.....

Project: Building a generic voxel phantom of IRINA for Monte Carlo simulations, 2014, NKS-323

Addressing: the tedious task of calibrating whole body gamma ray spectrometers

Generation and distribution of a voxel phantom version of the IRINA phantom for calibration of whole body counters.

NKS-B Gamma-ray spectrometry

What can be said to characterize NKS-B activities in relation to gamma spectrometry?

- \rightarrow Varied cover everything from the basics up to more advanced material.
- \rightarrow Often provide an impetus to improve/develop/expand
- \rightarrow Not risk averse willing to take chances on projects that could fall flat.
- \rightarrow Popular usually no shortage of participants for gamma spec. activities.
- → Broad appeal the number of participating countries in NKS gamma spec. activities is often much wider than simply the NKS countries.
- → Forward looking NKS has historically been able to recognize that gamma spec. is broader than just the usual isotopes in the usual samples by the usual detectors.
- \rightarrow Durable the reports are centralized and easily accessed.

NKS-B Gamma-ray spectrometry

Why participate in NKS gamma ray spectrometry activities?

- Informal no tedious EU-project type meetings
- > Miniscule amount of paper work
- Congenial the NKS gamma ray practitioners are mostly a nice bunch
- > Stress free rarely "proficiency" type activities and most often anonymous

NKS-B Gamma-ray spectrometry

http://www.nks.org/en/nks_reports/search_reports/

http://www.nks.org/en/nksb/supporting_material/

http://halla.gr.is/wiki/GammaWiki/index.php/Main_Page

This is NKS	NKS-R	NKS-B	News	Seminars	NKS Reports	Phantom Library
1						
nks Nordic nuclear safety rese	earch			[Search nks.org	٩
ou are here: Homepage / NKS F	Reports / Search Report	S				
List all reports	Searc	h Reports				
List all NKS-R reports		orts can be downloade juick links to the left. L	ed free of charge. Pleas			
			eaving the search lielu	blank will return all rep	ports with the specified	tilters.
List all NKS-B reports			eaving the search held		oorts with the specified	tilters.
	Latest doc				oorts with the specified	niters.
	All reports Only NKS	uments:			oorts with the specified	niters.
	All report Only NKS Only NKS	uments: s 3-R reports 3-B reports	eaving the search field	ه		TILLEYS.
	All report Only NKS Only NKS You can lin	uments: s R reports S-B reports nit your search furthe	Ĵ.	ه		TILLEYS.
	All report Only NKS Only NKS Only NKS You can lin	uments: s S-R reports S-B reports nit your search furthe vgical and nuclear eme	er by selecting one or	The followin		TILLEYS.
 List all NKS-B reports Search Reports 	All report: Only NKS Only NKS Only NKS You can lin Radiolc Measur	uments: s S-R reports S-B reports nit your search furthe vgical and nuclear eme	er by selecting one or argency preparedness ology and quality assur	The followin		Tillers.

Many thaks for your attention! Kærar þakkir fyrir athygli þína! Tusen takk for oppmerksomheten! Paljon kiitoksia huomiosta! Mange tak for din opmærksomhed! Stort tack för din uppmärksamhet