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Self-attenuation effects: the dependence of the peak count rate on photon 
interactions in the sample
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R(E), R0(E) = Peak count rates for 
the sample and for a completely 
transparent sample (0)

0, ΦΦ = Photon fluxes escaping 
from the samples without 
interactions
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Self-attenuation correction factor for a sample of matrix m with respect to a 
standard of matrix s:
Fa(E; m; s) = ε(E; m)/ε(E; s)

Useful for the computation of the efficiency for sample with matrix m on 
the basis of measured efficiency for sample s and of the computed value of 
the self-attenuation correction factor
ε(E; m) = Fa(E; m; s) ε(E; s)

Absolute self-attenuation factor – self-attenuation correction factor with 
respect to a vacuum sample
Fa0(E; m; 0) = ε(E; m)/ε(E; 0) 0 for vacuum sample

-Depends essentially on: 
-photon linear attenuation coefficient in the sample µ
-Dimensions of the sample



  

Applications

=> Computation of the efficiency for a sample with matrix m on the basis of a 
standard with a different matrix s:

		ε(E; m) = Fa(E; m; s) ε(E; s)

=> Compatibility test of reference sources with the same geometry but different 
matrices m1, m2, .., mk

	ε(1)(E; 0) = Fa(E; 0; m1) ε(E; m1)
	ε(2)(E; 0) = Fa(E; 0; m2) ε(E; m2)
The values ε(1)(E; 0), ε(2)(E; 02) … should be compatible. 
The best value of ε(E; 0) is their weighted average if all are compatible.
This best value should be used for the computation of the efficiency for 
other matrices

=> Estimation of the efficiency for a bulk sample with a volume higher than the 
volume of available certified reference material (CRM)



  

In the case of vacuum sources the count-rate (CR) for the big source satisfies:
CR4(3S) = CR1(S) + CR2(S) + CR3(S)
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In the case of vacuum sources the count-rate (CR) for the big source satisfies:
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⇒Correct the effects of self-attenuation:  εi(E; 0) = Fai(E; 0; m) εi(E; m)
⇒ Linear relations between the values of efficiency in geometry 4 and 
the efficiencies in geometries 1, 2 and 3 with reliable coefficients
εV(E; 0) = [ε1(E; 0) V1 + ε2(E; 0) V2 + ε3(E; 0) V3]/V, with V=V1+V2+V3

εV(E; m) = FaV(E; m; 0) εV(E; 0)

Sima and Dovlete, JRNCL 200 (1995) 191

Sources bigger than the CRM available



  

2. Sample density and composition

-Linear attenuation coefficient depends on:
-Sample composition 
-Sample density
-Photon energy

Computation of interaction coefficients if the composition is known:
-Tabulated values

-Usually mass attenuation coefficients µm

-Linear attenuation coefficients: µ = µm ρ,  ρ = density
Software and database with values of the photon interaction coefficients:

XCOM (M.J.Berger et al., NIST)
Software for visualization of the dependence of interaction coefficients on 
element and energy – EPICSHOW (NEA databank)



  

 µ:  transmission measurements with collimated point sources.

R(d) = R0 exp (-µd)  => µ = ln(R0 / R ) / d

d  = the length of photon path through the material
R and R0 = the count rate in the peak, in the presence (R) and in 
the absence (R0) of the material
Problems:
- High intensity sources required
-At low energy – small angle Compton scattering contribution

=> the collimated source and the sample far from detector
-If possible single line gamma emitters should be used
-Time consuming, problems with the storage of high activity sources 

Experimental determination of linear attenuation coefficient for samples 
with unknown composition

1. Collimated beam transmission experiments

Collimator

Collimator

d

Detector

Source

Sample
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2. Uncollimated beam transmission experiments

- Point source placed directly above the sample
- Measure count rate with the sample and with an identical empty container

-Advantage: low activity sources can be used
-Disadvantages: 

-The path length through the sample are not constant
-Each path has a different probability to contribute to peak count rate
-Low angle Compton scattering

-Coincidence summing effects can seriously distort the results
-Single gamma emitting nuclides should be used

-Correct results: realistic simulation of the experiment
-Transmission factor computed by Monte Carlo [≠ exp(-µd)]



  

Transmission factors (log scale). Sample: R=3.5, H=2 cm

Linear attenuation coefficient (1/cm)
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Relative error δ (%). Soil sample, R=3.5 cm, H=2 cm. 
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Sima and Arnold, 56 (2002) 71



  

Simplified analytical relations

Cylindrical sample
Cutshall et al. NIM 206 (1983) 309
The number of photons emitted in a given direction 
from a section of the sample that escape without 
interactions:

dx
x

Detector

∆Ω
l

A, V = activity and volume of the source
Pγ = photon emission probability
dS dx = emission volume element
dΩ = elementary solid angle within the solid angle 

∆Ω of the detector
Approximations: 
   -small solid angle, l(Ω)=x, independent of the direction of the 
photon and of the position of the emission point within dx;
   -∆Ω independent on the emission point. 
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Integration over dS and dΩ => replacement of dS with ∆S (surface of the 
sample) and of dΩ with ∆Ω
Integration over x from 0 to d (thickness of the sample) gives the number of 
photons emitted from the sample that hit the detector without any interaction in 
the sample:
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The same quantity in the case when attenuation in the sample is negligible is:

dSP
V
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Assuming that the probability of a count in the peak for each photon that hits 
the detector without having any interaction in the sample is the same, the ratio 
of the count rate R in the peak for the sample of interest to the count rate R0 for 
the sample with negligible attenuation is:

ε  the efficiency in the presence of attenuation
ε0  the efficiency in the absence of attenuation



  

Evaluation of the linear attenuation coefficient: transmission measurements






=⋅⋅−=

I
Idd

I
I 0

0

ln),exp( µµ

=>







−
=

I
I
I
I

0

0

0 ln

1

ε
ε

Approximations: 
     -each photon trajectory is perpendicular on detector surface
     -all the photons incident on the detector have equal probability to be recorded 
in the peak

Miller, NIMA 258 (1987) 281 and Galloway, NIMA 300 (1991) 367



  

Marinelli beaker, small uniformly efficient detector

r

The number of photons emitted from a volume element 
dV  located at (r,θ, φ) that hit the detector:
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A, V = activity and volume of the source
Pγ = photon emission probability
S = detector surface 
rm and rM = distances from the center of the detector 
to the entrance and exit from beaker.

Ω⋅= drdV 2 the radial integral can be evaluated
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Then the angle integral can be evaluated as
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Sima, Health Phys. 62 (1992) 445
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=>
t can be evaluated analytically:



  

4. General formalism

Analytical expressions: approximate, based on simplifying assumptions 
-Cutshall: parallel trajectories, same probability to be recorded in the 
peak; 
-Sima: small uniformly efficient detector, narrow distribution of ),( φθl
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Exact expression for the absolute value of the self-attenuation factor 
(homogeneous source):
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coordinates and direction of the emission in the sample of volume V

linear attenuation coefficient and length of trajectory through the sample
transmission factor through the walls of the container, end cap etc.
probability to record in the peak the photon that enters in the detector

=> the effects of sample matrix, of the geometry and of the intrinsic efficiency can 
not be described independently of each other (Moens et al., NIM 187 (1981) 451)  



  

Fa depends mainly on linear attenuation coefficient µ and on the 
geometry of the sample

Is it a property of the sample and of the matrix?
-Slight dependence on the detector:

-Dimensions
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p-type
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- p-type detector – more complex, higher probability of complete absorption 
in the peak versus higher absorption in the dead layer at low photon energies

Sima, Progr. Nucl. Energy 24 (1990) 327



  

p-type
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- p-type detector – more complex, higher probability of complete absorption 
in the peak versus higher absorption in the dead layer at low photon energies

Sima, Progr. Nucl. Energy 24 (1990) 327

For the same sample and detector Fa depends on the distance between the 
sample and the detector



  

If two matrices have µ1(E0) = µ2(E0) = µ0 and are in identical containers, 
measured with the same detector in the same configuration, is Fa1(E0; m1, 0) 
equal to Fa2(E0; m2, 0) ?
   - closed end coaxial detectors: yes
   - well-type detectors: not

Compton
ED1=E0-E’

ED2=E’

If ED1+ED2 = E0 => signal in the peak of 
energy E0

   - the probability of traversing the 
sample at energy E’ depends on µ(E’) 

 => Rigorously in the case of well-type detectors Fa depends on the complete 
curve µ(E) for E<E0 and not only on the value µ0 of µ(E) for E= E0

 => In current conditions self-attenuation effects are small in the case of well 
type detector – the dependence of Fa on the complete curve  µ(E) is very weak

Sima and Arnold, ARI 47 (1996) 889



  

Observation:
-In case of high attenuation only a thin layer of the sample located close to 
the detector is important; e.g. for µ=10 cm-1 only a layer of a few mm is 
important
⇒If that layer is not representative for the complete sample (non-
homogeneity of matrix or of the radionuclide distribution) then wrong 
values are computed for the efficiency of the sample on the basis of the 
measured efficiency for the standard and of the computed values of Fa .

-In case of grains, at very high attenuation the distribution of activity inside 
the grains is very important
   Example: Forster and Umbarger, NIM 117 (1974) 597 – metallic spheres 
containing Pu



  

5. Monte Carlo calculation

First realistic, direct, computations of Fa:
   - Nakamura and Suzuki, NIM 205 (1983) 211
Realistic computations with a very fast algorithm:
   - Sima, Prog. Nucl. Energy 24 (1990) 327; Sima and Dovlete ARI 48 (1997) 59
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The absolute self-attenuation factor

Usually computed by independent Monte Carlo runs for each case of interest 
(matrix effects interdependent with geometry and intrinsic efficiency effects)
However:
=> The dependence of Fa on sample matrix is only through the value of the 
linear attenuation coefficient µ=µm(E) at the energy E of the peak (exception: 
well-type detectors)
=> Optimized procedure



  

⇒Power series expansion of the exponential:

⇒Very fast calculation of Fa for any linear attenuation coefficient if the 
coefficients ak have been already evaluated
Procedure implemented in GESPECOR
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=> Monte Carlo evaluation of the moments of the length of the trajectories: 

ak depend on sample geometry, detector dimensions, energy, but not on the 
matrix of the sample
     -all ak coefficients evaluated in a single Monte Carlo run and saved
     -a single Monte Carlo simulation is required for any combination 
(geometry of the sample and detector)
Fa becomes a polynomial function of µ:
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6. GESPECOR

Realistic computation of the absolute and of the relative self-attenuation 
correction factors for cylindrical and Marinelli beaker samples with any 
matrix and density, for coaxial HPGe detectors and well-type detectors

Typical computations:
-Fast procedure based on Monte Carlo evaluation of the moments of the 
length of the photon trajectory through the sample
-Linear attenuation coefficient in the sample:

-Based on sample composition and density using XCOM
-Measured values of the linear attenuation coefficient

-Collimated beam transmission measurements
-Uncollimated point source transmission measurements, evaluated 
rigorously using Monte Carlo simulation

Special computations:
-Independent Monte Carlo computation for each case
-Linear attenuation coefficient in the sample – as above



  
GESPECOR: Standard computation of self-attenuation corrections for a soil 
sample with respect to a water standard using the composition of the matrices



  
GESPECOR: Standard computation of self-attenuation corrections for a concrete 
sample with respect to a water standard using experimental values of µ for 
concrete



  
GESPECOR: Special computation of self-attenuation corrections for a concrete 
sample with respect to a water standard using values of µ given by the user



  
GESPECOR: Input data for the computation of the linear attenuation coefficient at 
100 keV based on uncollimated point source transmission measurements



  

7. Summary

Realistic and fast procedures are available for accurate evaluation of matrix 
effects (self-attenuation corrections) in gamma-ray spectrometry of volume 
samples.

Linear attenuation coefficients can be computed on the basis of sample 
composition and density or using collimated or uncollimated transmission 
measurements

Sample homogeneity very important especially at high attenuation

Self-attenuation correction factors are most useful for computing the 
efficiency for a sample with a specific matrix on the basis of a standard with 
a different matrix.

Also useful for checking compatibility of standards with the same geometry 
but different matrices and for the evaluation of the efficiency for a sample of 
volume higher than the available certified reference material on the basis of 
measured efficiencies.
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