Technical Visit on

Coincidence summing and geometry correction in gamma spectrometry IAEA Laboratories, Seibersdorf, Austria 19-23 July 2010

Coincidence summing correction Canberra Genie 2000

Alessia Ceccatelli

Terrestrial Environment Laboratory-Chemistry Unit

Empirical Method – 1/2

Based on <u>experimental determination of peak-to-total</u> ratios creation of a P/T calibration curve

- 1. Measurement of a set of single photon emitters (⁵⁴Mn, ⁵⁷Co, ⁶⁵Zn, ¹⁰⁹Cd, ¹¹³Sn, ¹³⁷Cs, ²⁴¹Am)
- 2. Peak analysis results file generated and used by the Peakto-Total Efficiency Generation programme (PTEG)
- 3. List of P/T ratios generated for the main and side peaks of each calibration nuclide
- P/T calibration curve generated by the Peak-to-Total Calibration Curve programme (PTCC) with an iterative procedures resolution of contribution of the side peak to the "total" value from the contribution of main peak

Empirical Method – 2/2

The total number of counts is calculated by:

$$TOTAL = \sum_{i=ETZ}^{R} Ci + AvgCETZ \cdot ETZ$$

Where:

R = channel number corresponding to right boundary of FEP C_i = count at the i-th channel ETZ = "extrapolation to zero" cut-off channel Avg C_{ETZ} = average count at the ETZ cut off channel

 The full energy peak area is obtained using Genie 2000 peak analysis

Analytical Method using LABSOCS – 1/3

Total efficiencies are calculated by LABSOCS software

FEP efficiencies can be determined either experimentally or analytically (LABSOCS)

Analytical Method using LABSOCS – 2/3

Eu-152 Source-to-detector distance = 0.5 cm

Detector size: d = 10.16 cm L = 13.34 cm

60 % rel. eff.

E (keV)	1/Ci
121.78	1.4045
244.69	1.6051
344.27	1.2107
411.11	1.6611
443.98	1.5552
778.89	1.3755
867.32	1.9342
964.01	1.3736
1085.78	0.9488
1112.02	1.2422
1407.95	1.3055

Analytical Method using LABSOCS – 3/3

Source-to-detector distance = 5 cm <u>Different detectors</u> !

Eu-152			
	LABSOCS	Simplified procedure	
E (keV)	1/Ci_5 cm	1/Ci_5 cm	
121.8	1.0764	1.0722	
244.7	1.1086	1.0910	
344.3	1.0417	1.0231	
411.1	1.1111	1.0549	
444.0	1.0977	1.0865	
778.9	1.0672	1.0324	
867.3	1.1442	1.1066	
964.0	1.0730	1.0698	
1085.8	0.9823	1.0061	
1112.0	1.0482	1.0428	
1408.0	1.0604	1.0519	

20% rel_eff

Cs-134			
	LABSOCS	Simplified pro	ocedure
E (keV)	1/Ci_5 cm	1/Ci_5 cm	
563.2	1.1123	1.0659	
569.3	1.1223	1.0654	
604.7	1.0707	1.0388	
795.8	1.0730	1.0390	
801.9	1.1136	1.0605	
1365.2	0.8666	0.9515	

LABSOCS: 101.6 mm diameter, 133.4 length AEA Simplified procedure: 49.8 mm diameter, 47.8 mm length

References

- [1] R. Venkataraman, S. Croft, W. R. Russ Calculation of peak-tototal ratios for high purity germanium detectors using Monte-Carlo modeling J. Radioanal. Nucl. Chem, Vol. 264, No. 1 (2005) 183-191
- [2] V. P. Kolotov, M. J. Koskelo Testing of different true coincidence correction approaches for gamma-ray spectrometry of voluminous sources J. Radioanal. Nucl. Chem, Vol. 233, Nos 1 2 (1998) 95-100
- [3] F. De Corte, C. Frietas J. Radioanal. Nucl. Chem, 160:253 (1992)

